PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical investigations on dynamic tensile behavior of a ZrB2-SiC ceramic

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic tensile behavior of a ZrB2-SiC ceramic was investigated via split Hopkinson pressure bar tests and a bond-based peridynamic model. The experimental results showed that the peak dynamic splitting tensile stress increased linearly with the strain rate. The dynamic tensile stress history and fracture pattern exhibited a significant strain-rate dependence. In simulation, the strain-rate dependent on the critical energy release rate was introduced to predict the dynamic tensile behavior of the ZrB2-SiC ceramic. The numerical results were in good agreement with the experimental results, verifying the applicability of the peridynamic model. The maximum error of the peak dynamic splitting tensile stress between the experimental and numerical results was no greater than 6%. Moreover, the effect of the strain rate on the fracture patterns of the ZrB2-SiC ceramic composite can be well predicted by the peridynamics method. The ZrB2-SiC composite specimen split into two large fragments with additional small fragments under dynamic splitting tension. With the increase of strain rate, the main crack propagation and branching led to a larger fracture region in the middle of the specimen.
Rocznik
Strony
53--73
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Engineering, Guizhou University, Guiyang 550025, PR China
autor
  • College of Civil Engineering, Guizhou University, Guiyang 550025, PR China
autor
  • College of Civil Engineering, Guizhou University, Guiyang 550025, PR China
autor
  • College of Civil Engineering, Guizhou University, Guiyang 550025, PR China
autor
  • College of Civil Engineering, Guizhou University, Guiyang 550025, PR China
Bibliografia
  • 1. F. Monteverde, A. Bellosi, L. Scatteia, Processing and properties of ultra-high temperature ceramics for space applications, Materials Science and Engineering, A 485, 1–2, 415–421, 2008.
  • 2. T.H. Squire, J. Marschall, Material property requirements for analysis and design of UHTC components in hypersonic applications Journal of the European Ceramic Society, 30, 11, 2239–2251, 2010.
  • 3. R. Savino, L. Criscuolo, G.D. Di Martino, S. Mungiguerra, Aero-thermochemical characterization of ultra-high-temperature ceramics for aerospace applications, Journal of the European Ceramic Society, 38, 8, 2937–2953, 2018.
  • 4. X.F. Ma, C.C. Wei, R.X. Liu, S. Li, Z.Y. Zhang, L.Y. Liu, P. Wang, Y.S. Wang, Ablative properties of laminated ZrB2-SiC ceramic modified by SiC whisker in oxyacetylene environment, Corrosion Science, 182, 109283, 2020.
  • 5. B.S. Xu, R.J. He, C.Q. Hong, Y.B. Ma, W.B. Wen, H.M. Li, T.B. Cheng, D.N. Fang, Y.Z. Yang, Ablation behavior and mechanism of double-layer ZrB2-based ceramic coating for lightweight carbon-bonded carbon fiber composites under oxyacetylene flame at elevate temperature, Journal of Alloys and Compounds, 702, 551–560, 2017.
  • 6. K. Wei, R.J. He, X.M. Cheng, R.B. Zhang, Y.M. Pei, D.N. Fang, A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications, Materials & Design, 66, 552–556, 2015.
  • 7. A. Nisar, M.M. Khan, K. Balani, Enhanced thermos-mechanical damage tolerance of functionally graded ZrB2-20SiC ceramic reinforced with carbon nanotubes, Ceramics International, 45, 5, 6198–6208, 2019.
  • 8. M. Lugovy, V. Slyunyayew, N. Orlovskaya, E. Mitrentsis, C.G. Aneziris, T. Graule, J. Kuebler, Temperature dependence of elastic properties of ZrB2-SiC composites, Ceramics International, 42, 2, 2439–2445, 2016.
  • 9. P. Hu, Z. Wang, Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800_ C, Journal of the European Ceramic Society, 30, 4, 1021–1026, 2010.
  • 10. R.Z. Wang, W.G. Li, D.Y. Li, D.N. Fang, A new temperature dependent fracture strength model for the ZrB2-SiC composites, Journal of the European Ceramic Society, 35, 10, 2957–2962, 2015.
  • 11. X. Yue, X.H. Peng, Z. Wei, X.S. Chen, T. Fu, Effect of heating rate on the strength of ZrB2-SiC composites subjected to cyclic thermal shock, Ceramics International, 45, 12, 15400–15405, 2019.
  • 12. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, Thermal shock resistance of ZrB2 and ZrB2-30% SiC, Materials Chemistry and Physics, 112, 1, 140–145, 2008.
  • 13. S.H. Meng, F. Qi, H.B. Chen, Z. Wang, G.H. Bai, The repeated thermal shock behaviors of a ZrB2-SiC composite heated by electric resistance, International Journal of Refractory Metals & Hard Materials, 29, 1, 44–48, 2011.
  • 14. Z. Balak, M. Azizieh, H. Kafashan, A.M. Shahedi, Z. Ahmadi, Optimization of effective parameters on thermal shock resistance of ZrB2-SiC-based composites prepared by SPS: Using Taguchi design, Materials Chemistry and Physics, 196, 333–340, 2017.
  • 15. X.H. Zhang, P. Hu, J.C. Han, S.H. Meng, Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions, Composites Science and Technology 68, 7–8, 1718–1726, 2008.
  • 16. H.W. Zhang, D.D. Jayaseelan, I. Bogomol, M.J. Reece, C.F. Hu, S. Grasso, W.E. Lee, A novel microstructural design to improve the oxidation resistance of ZrB2-SiC ultra-high temperature ceramics (UHTCs), Journal of Alloys and Compounds, 785, 958–964, 2019.
  • 17. A. Radhi, V. Lacobellis, K. Behdinan, A passive oxidation, finite element kinetics model of an ultra-high temperature ceramic composite, Composites Part B-Engineering, 175, 107129, 2019.
  • 18. Z.Y. Wang, R.T. Li, W.D. Song, Dynamic failure and inelastic deformation behavior of SiC ceramic under uniaxial compression, Ceramics International, 46, 1, 612–617, 2020.
  • 19. J. Venkatesan, M.A. Iqbal, V. Madhu, Experimental and numerical study of the dynamic response of B4C ceramic under uniaxial compression, Thin Wall Structure, 154, 106785, 2020.
  • 20. Y.J. Deng, H. Chen, X.W. Chen, Y. Yao, Dynamic failure behavior analysis of TiB2-B4C ceramic composites by split Hopkinson pressure bar testing, Ceramics International, 47, 15, 22096–22107, 2021.
  • 21. M. Shafiq, G. Subhash, Dynamic deformation characteristics of zirconium diboridesilicon carbide under multi-axial confinement, International Journal of Impact Engineering, 91, 158–169, 2016.
  • 22. L.L. Wang, J. Liang, G.D. Fang, X.Y. Wan, J.B Xie, Effects of strain rate and temperature on compressive strength and fragment size of ZrB2-SiC-graphite composites, Ceramics International, 40, 4, 5255–5261, 2014.
  • 23. W. Huang, M. Wang, Z. Hu, L.L. Wang, J.X. Cao, D.W. Kong, Experimental and numerical investigation on strain rate-dependent tensile behavior of ZrB2-SiC ceramic composite, Acta Mechanica Solida Sinica, 34, 137–148, 2021.
  • 24. M. Wang, D.W. Kong, L.L. Wang, Y.B. Li, T. Cai, Dynamic compressive response of zirconium diboridesilicon carbide composites at highstrain rates, International Journal of Applied Ceramic Technology, 16, 6, 2206–2213, 2019.
  • 25. Z.Y. Wang, P.F. Li, Dynamic failure and fracture mechanism in alumina ceramics: experimental observations and finite element modelling, Ceramics International, 41, 10, 12763–12772, 2015.
  • 26. Y.L. Li, S.S. Hu, Y.H. Li, Research on dynamic behaviors of A95 ceramics under compression, Explosion and Shock Waves, 24, 233–239, 2004 [in Chinese].
  • 27. J.Z. Chang, Z.F. Liu, Y.H. Li, Y.L. Li, J.P. Li, Numerical simulations for dynamic behaviors of A95 ceramic under shock compression, Journal of Materials Science & Engineering, 4, 616–619, 2007 [in Chinese].
  • 28. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48, 1, 175–209, 2000.
  • 29. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & Structures, 83, 17–18, 1526–1535, 2005.
  • 30. S.A. Silling, E. Askari, Peridynamic Modeling of Impact Damage, [in:] F.J. Moody [ed.], American Society of Mechanical Engineers, New York, pp. 197–205, 2004.
  • 31. P. Demmie, S.A. Silling, An approach to modeling extreme loading of structures using peridynamics, Journal of Mechanics of Materials and Structures, 2, 10, 1921–1945, 2007.
  • 32. Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics, Engineering Fracture Mechanics, 78, 6, 1156–1168, 2011.
  • 33. Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162, 1, 229–244, 2010.
  • 34. F. Bobaru, G.F. Zhang, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, International Journal of Fracture, 196, 1–2, 59–98, 2016.
  • 35. J. Lee, J.W. Hong, Dynamic crack branching and curving in brittle polymers, International Journal of Solids and Structures, 100–101, 332–340, 2016.
  • 36. A. Candas, E. Oterkus, C.E. Imrak, Dynamic crack propagation and its interaction with micro-cracks in an impact problem, Journal of Engineering Materials and Technology-Transactions of the ASME, 143, 1, 011003, 2021.
  • 37. A. Candas, E. Oterkus, C.E. Imrak, Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load, Engineering with Computers, 39, 253–267, 2023.
  • 38. T. Jia, D. Liu, Simulating wave propagation in SHPB with peridynamics, [in:] B. Song, D. Casem J. Kimberley [eds.], Dynamic Behavior of Materials, Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series Springer, Cham, pp. 195–200, 2014.
  • 39. X. Gu, Q. Zhang, D. Huang, Y.T. Yv, Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics, Engineering Fracture Mechanics, 160, 124–137, 2016.
  • 40. D.H. Ai, Y.H. Zhao, Q.F. Wang, C.W. Li, Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test, International Journal of Impact Engineering, 126, 135–146, 2019.
  • 41. Y.X. Zhou, K. Xia, X.B. Li, H.B. Li, G.W. Ma, J. Zhao, Z.L. Zhou, F. Dai, Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials, International Journal of Rock Mechanics and Mining Sciences, 49, 105–112, 2012.
  • 42. W. Gerstle, N. Sau, S.A. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237, 12–13, 1250–1258, 2007.
  • 43. C.L. Gao, Z.Q. Zhou, Z.H. Li, L.P. Li, S. Cheng, Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation, Tunnelling and Underground Space Technology, 97, 103289, 2020.
  • 44. Y.N. Zhang, H.W. Deng, J.R. Deng, C.J. Liu, B. Ke, Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading, International Journal of Rock Mechanics and Mining Sciences, 123, 104093, 2019.
  • 45. C. Diyaroglua, E. Oterkusa, E. Madencib, T. Rabczukc, A. Siddiq, Peridynamic modeling of composite laminates under explosive loading, Composite Structures, 144, 14–23, 2016.
  • 46. Y.L. Hu, N.V. De Carvalhob, E. Madenci, Peridynamic modeling of delamination growth in composite laminates, Composite Structures, 132, 610–620, 2015.
  • 47. L.L. Wang, J.X. Cao, Y.S. Zhao, X. Cheng, D.W. Kong, Application situation of peridynamics theory in the study of the failure of brittle materials, Journal of Guizhou University (Natural Sciences), 38, 5, 23–30, 2021 [in Chinese].
  • 48. B. Ren, C.T. Wu, E. Askari, A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis, International Journal of Impact Engineering, 99, 14–25, 2017.
  • 49. Y. Azdoud, F. Han, G. Lubineau, The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture, Computational Mechanics, 54, 711–722, 2014.
  • 50. H.Z. Xing, F. Xie, M.Y. Wang, K.D. Xie, Y.Y. Qiu, Experimental investigation of fracture process zone of rock in dynamic mode I fracturing and its effect on dynamic crack initiation toughness, Engineering Fracture Mechanics, 275, 108828, 2022.
  • 51. J.F. Knott, Fundamentals of Fracture Mechanics, Butterworth, London, 1973.
  • 52. W. Yao, K.W. Xia, Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications, Journal of Rock Mechanics and Geotechnical Engineering, 11, 5, 1066–1093, 2019.
  • 53. L. Hai, J.Y. Wu, J. Li, A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids, Engineering Fracture Mechanics, 225, 106821, 2020.
  • 54. W.M. Guo, Y. You, G.J. Zhang, S.H. Wu, H.T. Lin, Improvement of fracture toughness of ZrB2-SiC composites with carbon interfaces, Journal of the European Ceramic Society, 35, 6, 1985–1989, 2015.
  • 55. P. Zhou, P. Hu, X.H. Zhang, W.B. Han, Laminated ZrB2-SiC ceramic with improved strength and toughness, Scripta Materialia, 64, 3, 276–279, 2011.
  • 56. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, Evaluation of ultra-high temperature ceramics for aero-propulsion use, Journal of the European Ceramic Society, 22, 14–15, 2757–2767, 2002.
  • 57. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, Journal of the American Ceramic Society, 90, 5, 1347–1364, 2007.
  • 58. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, High-strength zirconium diboride-based ceramics, Journal of the American Ceramic Society, 87, 6, 1170–1172, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2511059-2531-4a40-a1f7-1af20a00760f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.