Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
Abstrakty
Life Cycle Assessment (LCA) is an important tool of Circular Economy (CE), which performs the analysis in a closed loop (“cradle-to-cradle”) of any product, process or technology. LCA assesses the environmental threats (climate change, ozone layer depletion, eutrophication, biodiversity loss, etc.), searches for solutions to minimize environmental burdens and together with CE contributes to reducing greenhouse gas emission, counteracts global climate crisis. The CE is a strategy for creating value for the economy, society and business while minimizing resource use and environmental impacts through reducing, re-using and recycling. In contrast, life cycle assessment is a robust and science-based tool to measure the environmental impacts of products, services and business models. Combining both the robustness of the LCA methodology and the principles of circular economy one will get a holistic approach for innovation. After a presentation of the LCA framework and methods used, 27 examples of case studies of comparative LCA analysis for replacement materials to reduce environmental load and their challenges as assessment methods for CE strategies are presented. It was concluded that there is a need for improvement of existing solutions, developing the intersection between the CE and LCA. Suggestions for developing a sustainable future were also made.
Rocznik
Tom
Strony
art. no. e37
Opis fizyczny
Bibliogr. 85 poz., rys., tab.
Twórcy
autor
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wólczańska Street, 90-924 Lodz, Poland
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wólczańska Street, 90-924 Lodz, Poland
Bibliografia
- 1. Abalansa S., El Mahrad B., Icely J., Newton A., 2021. Electronic waste, and environmental problem exported to developing countries: The GOOD, the BAD and the UGLY. Sustainability, 13, 5302. DOI: 10.3390/su13095302.
- 2. Agudelo L.-M., Mejía-Gutiérrez R., Nadeau J.P., Pailhès J., 2014. Life cycle analysis in preliminary design stages. Joint Con- ference on Mechanical, Design Engineering & Advanced Manufacturing. Toulouse, France, June 2014, 1–7, hal-01066385.
- 3. Amasawa E., Ihara T., Ohta T., Hanaki K., 2016. Life cycle assessment of organic light emitting diode display as emerging materials and technology. J. Cleaner Prod., 135, 1340–1350. DOI: 10.1016/j.jclepro.2016.07.025.
- 4. Andersen O., Hille J., Gilpin G., Andrae A.S.G., 2014. Life cycle assessment of electronics. IEEE Conference on Technologiesfor Sustainability (SusTech). Portland, OR, USA, 22–29. DOI: 10.1109/SusTech.2014.7046212.
- 5. Andrew R.M., 2019. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data, 11, 1675–1710. DOI: 10.5194/essd-11-1675-2019.
- 6. Arvidsson R., Kushnir D., Molander S., Sandén B.A., 2016. En- ergy and resource use assessment of graphene as a substitute for indium tin oxide in transparent electrodes. J. Cleaner Prod.,132, 289–297. DOI: 10.1016/j.jclepro.2015.04.076.
- 7. Bhakar V., Agur A., Digalwar A.K., Sangwan K.S., 2015. Life cycle assessment of CRT, LCD and LED monitors. Procedia CIRP, 29, 432–437. DOI: 10.1016/j.procir.2015.02.003.
- 8. Bobba S., Carrara S., Huisman J., Mathieux F., Pavel C., 2020. Critical raw materials for strategic technologies and sectors in the EU: A foresight study. European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Publications Office of the European Union. DOI: 10.2873/58081.
- 9. Bovea M.D., Ibáñez-Forés V., Pérez-Belis V., 2020. Repair vs. replacement: Selection of the best end-of-life scenario for small household electric and electronic equipment based on life cycle assessment. J. Environ. Manage., 254, 109679. DOI: 10.1016/j.jenvman.2019.109679.
- 10. Bressi S., Santos J., Orešković M., Losa M., 2021. A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using llife cycle assessment. Int. J. Pavement Eng., 22, 524–538. DOI: 10.1080 10298436.2019.1623404.
- 11. Cabeza L.F., Rincón L., Vilariño V., Pérez G., Castell A., 2014. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable Sustainable Energy Rev., 29, 394–416. DOI: 10.1016/j.rser.2013.08.037.
- 12. Chen N., He Y., Su Y., Li X., Huang Q., Wang H., Zhang X., Tai R., Fan C., 2012. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 33, 1238–1244. DOI: 10.1016/j.biomaterials.2011.10.070.
- 13. Chopra S.S., Theis T.L., 2017. Comparative cradle-to-gate energy assessment of indium phosphide and cadmium selenide quantum dot displays. Environ. Sci.: Nano, 4, 244–254. DOI: 10.1039/c6en00326e.
- 14. Clarke C., Williams I.D., Turner D.A., 2019. Evaluating the carbon footprint of WEEE management in the UK. Resour. Conserv. Recycl., 141, 465–473. DOI: 10.1016/j.resconrec.2018.10.003.
- 15. Colangelo F., Forcina A., Farina I., Petrillo A., 2018. Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8, 70. DOI: 10.3390/buildings8050070.
- 16. Collivignarelli M.C., Cillari G., Ricciardi P., Miino M.C., Torretta V., Rada E.C., Abbà A., 2020. The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability, 12, 7903. DOI: 10.3390/SU12197903.
- 17. Corbière-Nicollier T., Gfeller Laban B., Lundquist L., Leterrier Y., Månson J.-A.E., Jolliet O., 2001. Life cycle assessment of biofibers replacing glass fibers as reinforcement in plastics. Resour. Conserv. Recycl., 33, 267–287. DOI: 10.1016/S0921-3449(01)00089-1.
- 18. Corona B., Bozhilova-Kisheva K.P., Olsen S.I., San Miguel G. 2017. Social life cycle assessment of a concentrated solar power plant in Spain: A methodological proposal. J. Ind. Ecol., 21, 1566–1577. DOI: 10.1111/jiec.12541.
- 19. Dekoninck E., Barbaccia F., 2019. Streamlined assessment to assist in the design of Internet-of-Things (IoT) enabled products: A case study of the smart fridge. Proceedings of the Design Society: International Conference on Engineering Design ICED, 1, 3721–3730. DOI: 10.1017/dsi.2019.379.
- 20. Deng Y., Achten W.M.J., Van Acker K., Duflou J.R., 2013. Lifecycle assessment of wheat gluten powder and derived packaging film. Biofuels, Bioprod. Bioref., 7, 429–458. DOI: 10.1002/bbb.1406.
- 21. Doerffer K., Bałdowska-Witos P., Pysz M., Doerffer P., Tomporowski A., 2021. Manufacturing and recycling impact on environmental life cycle assessment of innovative wind power plant Part 1/2. Materials, 14, 220. DOI: 10.3390/ma14010220.
- 22. Dolega P., Bulach W., Betz J., Degreif S., Buchert M., 2021. Green technologies and critical raw materials. Oeko-Institut e.V., 14.06.2021. Available at: https://www.oeko.de/en/publications/p-details/green-technologies-and-critical-raw-materials.
- 23. Ecoinvent database. Available at: https://ecoinvent.org/the-ecoinvent-database/.
- 24. European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, 2020. Critical raw materials resilience: Charting a path towards greater security and sustainability. Communication from the Commission to the
- 25. European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2020) 474 final. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0474.
- 26. Faleschini F., De Marzi P., Pellegrino C., 2014. Recycled concrete containing EAF slag: Environmental assessment through LCA. Eur. J. Environ. Civ. Eng., 18, 1009–1024. DOI: 10.1080/19648189.2014.922505.
- 27. Faleschini F., Zanini M.A., Pellegrino C., 2016. Environmental impacts of recycled aggregate concrete. Italian Concrete Days – Evolution and Sustainability of the Concrete Structures, Aicap CTE Congress. 27-28 October 2016, Rome, Italy.
- 28. Ferreira V., Egizabal P., Popov V., García de Cortázar M., Irazustabarrena A., López-Sabirón A.M., Ferreira G., 2019. Lightweight automotive components based on nanodiamond-reinforced aluminium alloy: A technical and environmental evaluation. Diam. Relat. Mater., 92, 174–186. DOI: 10.1016/j.diamond.2018.12.015.
- 29. Finnveden G., Moberg Å., 2005. Environmental systems analysis tools – An overview. J. Cleaner Prod., 13, 1165–1173. DOI: 10.1016/j.jclepro.2004.06.004.
- 30. Fridrihsone A., Romagnoli F., Cabulis U., 2018. Life Cycle In- ventory for winter and spring rapeseed production in Northern Europe. J. Cleaner Prod., 177, 79–88. DOI: 10.1016/j.jclepro.2017.12.214.
- 31. Fridrihsone A., Romagnoli F., Kirsanovs V., Cabulis U., 2020 Life Cycle Assessment of vegetable oil based polyols for polyurethane production. J. Cleaner Prod., 266, 121403. DOI: 10.1016/j.jclepro.2020.121403.
- 32. Ganesarajan D., Simon L., Tamrakar S., Kiziltas A., Mielewski D., Behabtu N., Lenges C., 2022. Hybrid composites with engineered polysaccharides for automotive lightweight. Composites Part C: Open Access, 7, 100222. DOI: 10.1016/j.jcomc. 2021.100222.
- 33. Gong J., Darling S.B., You F., 2015. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci., 8, 1953–1968. DOI: 10.1039/c5ee00615e.
- 34. Hauschild M.Z., Rosenbaum R.K., Olsen S.I. (Eds.), 2018. Life cycle assessment: theory and practice. Springer International Publishing AG.
- 35. Hischier R., Reale F., Castellani V., Sala S., 2020. Environmental impacts of household appliances in Europe and scenarios for their impact reduction. J. Cleaner Prod., 267, 121952. DOI: https://doi.org/10.1016/j.jclepro.2020.121952
- 36. Holmquist H., Roos S., Schellenberger S., Jönsson C., Peters G., 2021. What difference can drop-in substitution actually make? A life cycle assessment of alternative water repellent chemicals. J. Cleaner Prod., 329, 129661. DOI: 10.1016/j.jclepro.2021.129661.
- 37. International Energy Agency, 2021. The role of critical minerals in clean energy transitions. Available at: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions.
- 38. IPCC, 2022. Global warming of 1.5 ◦C. An IPCC special report on the impacts of global warming of 1.5 ◦C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global responseto the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press. DOI: https://doi.org/10.1017/9781009157940.
- 39. ISO 14040:2006. Environmental Management – Life Cycle Assessment – Principles and Framework.
- 40. ISO 14044:2006. Environmental Management – Life Cycle Assessment – Requirements and Guidelines.
- 41. Jiménez-González C., Kim S., Overcash M.R. 2000. Methodology for developing gate-to-gate Life cycle inventory information. Int. J. LCA, 5, 153–159. DOI: 10.1007/BF02978615.
- 42. Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G., Rosenbaum R., 2003. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. LCA, 8, 324–330. DOI: 10.1007/BF02978505.
- 43. Kawajiri K., Tahara K., Uemiya S., 2022. Lifecycle assessment of critical material substitution: Indium tin oxide and aluminum zinc oxide in transparent electrodes. Resour. Environ. Sustainability, 7, 100047. DOI: 10.1016/j.resenv.2022.100047.
- 44. Kelly J.C., Sullivan J.L., Burnham A., Elgowainy A., 2015. Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environ. Sci. Technol., 49, 12535–12542. DOI: 10.1021/acs.est.5b03192.
- 45. Klöpffer W., Grahl B., 2014. Life Cycle Assessment (LCA): A guide to best practice. Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/9783527655625.
- 46. Knoeri C., Wäger P.A., Stamp A., Althaus H.J., Weil M., 2013. Towards a dynamic assessment of raw materials criticality: Linking agent-based demand – With material flow supply modelling approaches. Sci. Total Environ., 461–462, 808–812. DOI: 10.1016/j.scitotenv.2013.02.001.
- 47. Lin T.-H., Chien Y.-S., Chiu W.-M., 2017. Rubber tire life cycle assessment and the effect of reducing carbon footprint by replacing carbon black with graphene. Int. J. Green Energy, 14, 97-104. DOI: 10.1080/15435075.2016.1253575.
- 48. Lindgreen E.R., Mondello G., Salomone R., Lanuzza F., Saija G., 2021. Exploring the effectiveness of grey literature indicators and life cycle assessment in assessing circular economy at the micro level: a comparative analysis. Inter. J. LCA, 26, 2171–2191. DOI: 10.1007/s11367-021-01972-4.
- 49. Luo H., Cheng F., Huelsenbeck L., Smith N., 2021. Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: Life cycle assessment, technoeconomic assessment, and implications for CO2 capture and storage. J. Environ. Chem. Eng., 9, 105159. DOI: 10.1016/j.jece.2021.105159.
- 50. Mallick P.K., 2010. 1 – Overview, In: Mallick P.K. (Ed.), Materials, design and manufacturing for lightweight vehicles. Woodhead Publishing, 1-32. DOI: 10.1533/9781845697822.1.
- 51. Mancini L., Sala S., Recchioni M., Benini L., Goralczyk M., Pennington D., 2015. Potential of life cycle assessment for supporting the management of critical raw materials. Int. J. Life Cycle Assess., 20, 100–116. DOI: 10.1007/s11367-014-0808-0.
- 52. Matuštík J., Kočí V., 2020. A comparative life cycle assessment of electronic retail of household products. Sustainability, 12, 4604. DOI: 10.3390/su12114604.
- 53. Meex E., Hollberg A., Knapen E., Hildebrand L., Verbeeck G., 2018. Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Build. Environ., 133, 228–236. DOI: 10.1016/j.buildenv. 2018.02.016.
- 54. Monfared B., Furberg R., Palm B., 2014. Magnetic vs. Vapor compression household refrigerators: A preliminary comparative life cycle assessment. Int. J. Refrig., 42, 69–76. DOI: 10.1016/j.ijrefrig.2014.02.013.
- 55. Monteiro Lunardi M., Wing Yi Ho-Baillie A., Alvarez-Gaitan J.P., Moore S., Corkish R., 2017. A life cycle assessment of perovskite/silicon tandem solar cells. Prog. Photovoltaics Res. Appl., 25, 679–695. DOI: 10.1002/pip.2877.
- 56. Nassajfar M.N., Deviatkin I., Leminen V., Horttanainen M., 2021. Alternative materials for printed circuit board production: An environmental perspective. Sustainability, 13, 12126. DOI: 10.3390/su132112126.
- 57. Nunes I.C., Kohlbeck E., Beuren F.H., Fagundes A.B., Pereira D., 2021. Life cycle analysis of electronic products for a product-service system. J. Cleaner Prod., 314, 127926. DOI: 10.1016/j.jclepro.2021.127926.
- 58. Ojeda T., 2013. Polymers and the environment, In: Yilmaz F. (Ed.), Polymer Science. InTech, 1–34. DOI: 10.5772/51057.
- 59. Patiño-Ruiz D.A., Meramo-Hurtado S.I., González-Delgado Á.D., Herrera A., 2021. Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method: A comparative life cycle assessment study. ACS Omega, 6, 12410–12423. DOI: 10.1021/ac-somega.0c05246.
- 60. Peters J., Buchholz D., Passerini S., Weil M., 2016. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci., 9, 1744–1751. DOI: 10.1039/c6ee00640j.
- 61. Piotrowska K, Kruszelnicka W, Bałdowska-Witos P, Kasner R, Rudnicki J, Tomporowski A, Flizikowski J, Opielak M., 2019.
- 62. Assessment of the environmental impact of a car tire through-out its lifecycle using the LCA method. Materials, 12, 4177. DOI: 10.3390/ma12244177.
- 63. Piotrowska K., Piasecka I., 2021. Specification of environmental consequences of the life cycle of selected post-production waste of wind power plants blades. Materials, 14, 4975. DOI: 10.3390/ma14174975.
- 64. Pokhrel P., Lin S.-L., Tsai C.-T., 2020. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. J. Environ. Manage., 276, 111276. DOI: 10.1016/j.jenvman.2020.111276.
- 65. Potting J., Hekkert M., Worrell E., Hanemaaijer A., 2017. Circular economy: Measuring innovation in the product chain. PBL Netherlands Environmental Assessment Agency, The Hague.
- 66. Reinsch H., Waitschat S., Chavan S.M., Lillerud K.P., Stock N., 2016. A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur. J. Inorg. Chem., 2016, 4490–4498. DOI: 10.1002/ejic.201600295.
- 67. Rodríguez L.J., Fabbri S., Orrego C.E., Owsianiak M., 2020. Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. J. Environ. Manage., 266, 110493. DOI: 10.1016/j.jenvman. 2020.110493.
- 68. Ruiz D., San Miguel G., Rojo J., Teriús-Padrón J.G., Gaeta E., Arredondo M.T., Hernández J.F., Pérez J., 2022. Life cycl inventory and carbon footprint assessment of wireless ICT net-works for six demographic areas. Resour. Conserv. Recycl., 176, 105951. DOI: 10.1016/j.resconrec.2021.105951.
- 69. Ryberg M.W., Ohms P.K., Møller E., Lading T., 2021. Comparative life cycle assessment of four buildings in Greenland. Build. Environ., 204, 108130. DOI: 10.1016/j.buildenv.2021.108130.
- 70. Scharnhorst W., Hilty L.M., Jolliet O., 2006. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks. Environ. Int., 32, 656–675. DOI: 10.1016/j.envint.2006.03.001.
- 71. Spreafico C., 2022. An analysis of design strategies for circular economy through life cycle assessment. Environ. Monit. Assess., 194, 180. DOI: 10.1007/s10661-022-09803-1.
- 72. Suhariyanto T.T., Wahab D.A., Rahman M.N.A., 2018. Product design evaluation using life cycle assessment and design for assembly: A case study of a water leakage alarm. Sustainability, 10, 2821. DOI: 10.3390/su10082821.
- 73. Tadele D., Roy P., Defersha F., Misra M., Mohanty A.K., 2020. A comparative life-cycle assessment of talc- and biochar-reinforced composites for lightweight automotive parts. Clean Technol. Environ. Policy, 22, 639–649. DOI: 10.1007/s10098-019-01807-9.
- 74. Teh S.H., Wiedmann T., Castel A., de Burgh J., 2017. Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J. Cleaner Prod., 152, 312–320. DOI: 10.1016/j.jclepro.2017.03.122.
- 75. Thomas-Hillman I., Laybourn A., Dodds C., Kingman S.W., 2018. Realising the environmental benefits of metal-organic frameworks: recent advances in microwave synthesis. J. Mater. Chem. A, 6, 11564–11581. DOI: 10.1039/c8ta02919a.
- 76. Tisza M., Czinege I., 2018. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Lightweight Mater. Manuf., 1, 229–238. DOI: 10.1016/j.ijlmm.2018.09.001.
- 77. United Nations, 1987. Report of the World Commission on Environment and Development: Our Common Future (Brundtland Report). Annex to document A/42/427 – Development and International Cooperation: Environment.
- 78. United Nations, 2023. Transforming our world: the 2030 Agenda for sustainable development. A/RES/70/1. Available at: https://sdgs.un.org/2030agenda.
- 79. Wałach D., 2021. Analysis of factors affecting the environmental impact of concrete structures. Sustainability, 13, 204. DOI: 10.3390/su13010204.
- 80. Walker S., Rothman R., 2020. Life cycle assessment of bio- based and fossil-based plastic: A review. J. Cleaner Prod., 261, 121158. DOI: 10.1016/j.jclepro.2020.121158.
- 81. Wang S., Wang H., Xie P., Chen X., 2021. Life-cycle assessment of carbon footprint of bike-share and bus systems in campus transit. Sustainability, 13, 158. DOI: 10.3390/su13010158.
- 82. Weil M., Ziemann S., Schebek L., 2009. How to assess the availability of resources for new technologies? Case study: Lithium a strategic metal for emerging technologies. Rev. Met. Paris, 106, 554–558. DOI: 10.1051/metal/2009088.
- 83. Xie J., Lu Y.-C., 2020. A retrospective on lithium-ion batteries. Nat. Commun., 11, 2499. DOI: 10.1038/s41467-020-16259-9.
- 84. Zhang D., Ma X.-L., Gu Y., Huang H., Zhang G.-W., 2020. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem., 8, 799. DOI: 10.3389/fchem.2020.00799.
- 85. Ziemińska-Stolarska A., Pietrzak M., Zbiciński I., 2021. Application of LCA to determine environmental impact of concentrated photovoltaic solar panels–State-of-the-art. Energies, 14, 3143. DOI: 10.3390/en14113143.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e24cdb23-4347-4778-b0b2-f7c7a191c93c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.