Identyfikatory
Warianty tytułu
Przegląd metod estymacji parametrów geometrycznych drzew z danych ALS w kontekście ich aplikacji dla drzew uprawnych
Języki publikacji
Abstrakty
The aim of this paper is to overview and analyse existing methods for estimation of tree geometric parameters from Airborne Laser Scanning (ALS) data in the context of their possible application for agricultural areas. A detailed description of the estimation methodology proposed by various research groups is presented, including Canopy Height Model creation, tree identification, crown delineation in 2D and 3D, estimation of tree height, crown base height, crown diameters and crown volume. Efficiency and drawbacks of presented methods are identified. It is also analysed, whether the existing methods, originally developed for forestry areas, are suitable for agricultural trees.
Celami pracy są przegląd oraz analiza istniejących metod estymacji parametrów geometrycznych drzew na podstawie danych lotniczego skaningu laserowego w kontekście ich aplikacji dla drzew uprawnych. W artykule przedstawiono szczegółowy opis metod estymacji tych parametrów stosowanych przez różne grupy badawcze. Opis uwzględnia budowę wysokościowego modelu koron, identyfikację drzew, identyfikację kształtu koron w 2D i 3D, estymację wysokości drzew, wysokości podstawy koron, średnic oraz objętości koron. Wskazano zalety i wady zaprezentowanych metod. Przeanalizowano także, czy opisane metody rozwinięte na obszarach leśnych mogą być wykorzystywane w przypadku drzew uprawnych.
Słowa kluczowe
Rocznik
Tom
Strony
5--28
Opis fizyczny
Bibliogr. 105 poz., rys., tab.
Twórcy
autor
- Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 24, 50-357 Wrocław
Bibliografia
- Allouis T., Durrieu S., Véga C., Couteron P., 2013. Stem volume and above-ground biomass estimation of individual pine trees from LiDAR data: Contribution of full-waveform signals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 (2), 924–934.
- Angelo J., Duncan B., Weishampel J., 2010. Using lidar-derived vegetation profiles to predict time since fire in an Oak scrub landscape in East-Central Florida. Remote Sensing, 2 (2), 514–525.
- Barber C.B., Dobkin D.P., Huhdanpaa H.T., 1996. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22 (4), 469–483.
- Berg M.D., Kreveld M.V., Overmars M., Schwarzkopf O., 1997. Convex Hulls – Mixing Things. Computational Geometry-Algorithms and Applications, Springer-Verlag, Berlin, Heidelberg, Germany, 233–248.
- Bernard R., Frezal M.E., Vidal-Madjar D., Guyon D., Riom J., 1987. Nadir looking airborne radar and possible applications to forestry. Remote Sensing of Environment, 21 (3), 297–309.
- Beucher S., Lantuejoul C., 1979. Use of watersheds in contour detection. International Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1979.
- Brandtberg T., Walter F., 1998. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Machine Vision and Applications, 11 (2), 64–73.
- Brandtberg T., Warner T.A., Landenberger R.E., Mcgraw J.B., 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85 (3), 290–303.
- Breiman L., 2001. Random forests. Machine Learning, 45 (1), 5–32.
- Campbell J.B., 2002. Introduction to Remote Sensing. CRC Press.
- Chen Q., Baldocchi D., Gong P., Kelly M., 2006. Isolating individual trees in a savanna woodland using small footprint LIDAR data. Photogrammetric Engineering and Remote Sensing, 72, 923–932.
- Currie D., Shaw V., Bercha F., 1989. Integration of laser rangefinder and multispectral video data for forest measurements. Proceedings of IGARSS’89, Vancouver, Canada, 10–14 July 1989, 4, 2382–2384.
- Dalponte M., Frizzera L., Gianelle D., 2014a. Estimation of forest attributes at single tree level using hyperspectral and ALS data. In Proceedings of the ForestSAT 2014, Riva del Garda, Italy, 4–7 November, 2014.
- Dalponte M., Ørka H.O., Ene L.T., Gobakken T., Næsset E., 2014b. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 140, 306–317.
- Doruska P., Burkhart H., 1994. Modeling the diameter and locational distribution of branches within the crows of loblolly pine trees in unthinned plantations. Canadian Journal of Forest Research, 24 (12), 2362–2376.
- Dralle K., Rudemo M., 1996. Stem number estimation by kernel smoothing of aerial photos. Canadian Journal of Forest Research, 26 (7), 1228–1236.
- Dupuy S., Lainé G., Tassin J., Sarrailh J.-M., 2013. Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis. International Journal of Applied Earth Observation and Geoinformation, 25, 76–86.
- Ene L., Næsset E., Gobakken T., 2012. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. International Journal of Remote Sensing, 33 (16), 5171–5193.
- Erikson M., Olofsson K., 2005. Comparison of three individual tree crown detection methods. Machine Vision and Applications, 16 (4), 258–265.
- Estornell J.,Velázquez-Marti B., López-Cortés I., Salazar D., Fernández-Sarría A., 2014. Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data. GIScience and Remote Sensing, 51 (1), 17–29.
- Falkowski M.J., Smith A.M.S., Gessler P.E., Hudak A.T., Vierling L.A., Evans, J.S., 2008. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Canadian Journal of Remote Sensing, 34 (2), 338–350.
- Fieber K.D., Davenport I.J., Ferryman J.M., Gurney R.J., Walker J.P., Hacker J.M., 2013. Analysis of full-waveform LiDAR data for classification of an orange orchard scene. ISPRS Journal of Photogrammetry and Remote Sensing, 82 (13), 63–82.
- Forzieri G., Guarnieri L., Vivoni E.R., Castelli F., Preti, F., 2009. Multiple attribute decision making for individual tree detection using high-resolution laser scanning. Forest Ecology and Manage- Forest Ecology and Management, 258 (11), 2501–2510.
- Friedlaender H., 2002. Die Anwendung von flugzeuggetragenen Laserscannerdaten zur Ansprache dreidimensionaler Strukturelemente von Waldbeständen. Ph.D. dissertation, University of Freiburg, Freiburg, Germany.
- Gaveau D.L.A., Hill R.A., 2003. Quantifying canopy height underestimation by laser pulse penetration in small footprint airborne laserscanning data. Canadian Journal of Remote Sensing 29 (5), 650–657.
- Gougeon F., Moore T., 1988. Classification individuelle des arbres à partir d’images à haute résolution spatiale. Proceedings of 6e Congrès de L’association Québécoise de Télédétection, Sherbrooke, Canada, 4–6 May 1988, VI, 185–196.
- Gougeon F.A., 1995. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Canadian Journal of Remote Sensing, 21 (3), 274–284.
- Grafström A., Ringvall A.H., 2013. Improving forest field inventories by using remote sensing data in novel sampling designs. Canadian Journal of Forest Research, 43 (11), 1015–1022.
- Gupta S., Koch B., Weinacker H., 2010a. Tree species detection using full waveform lidar data in a complex forest. ISPRS TC VII Symposium – 100 Years of ISPRS, Vienna, Austria, 5–7 July 2010, 249–254.
- Gupta S., Weinacker H., Koch B., 2010b. Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar Data. Remote Sensing, 2 (4), 968–989.
- Hallikainen M., Hyyppä J., Somersalo E., 1989. Classification of forest types by microwave remote sensing. Proceedings of EARSeL 9th General Assembly and Symposium, Espoo, Finland, 27 June–1 July 1989, 293–298.
- Heurich M., 2008. Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest national park. Forest Ecology and Management, 255 (7), 2416–2433.
- Hinsley S., Hill R., Gaveau D., Bellamy P., 2002. Quantifying woodland structure and habitat quality for birds using airborne laser scanning. Functional Ecology, 16 (6), 851–857.
- Holmgren J., Barth A., Larsson H., Olsson H., 2012. Prediction of stem attributes by combining airborne laser scanning and measurements from harvesters. Silva Fennica 46 (2), 227–239.
- Holmgren J., Persson Å., 2004. Identifying species of individual trees using airborne laser scanning. Remote Sensing of Environment, 90 (4), 415–423.
- Holopainen M., Vastaranta M., Rasinmäki J., Kalliovirta J., Mäkinen A., Haapanen R., Melkas T., Yu X., Hyyppä J., 2010. Uncertainty in timber assortment estimates predicted from forest inventory data. European Journal of Forest Research, 129 (6), 1131–1142.
- Houghton R.A., Hall F., Goetz S.J., 2009. Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114 (G2).
- Hyyppä H., Hyyppä J., 1999. Comparing the accuracy of laser scanner with other optical remote sensing data sources for stand attributes retrieval. The Photogrammetric Journal of Finland, 16 (2), 5–15.
- Hyyppä J., Hallikainen M., Hyyppä H., 1996. A scanning ranging radar for forest inventory. Proceedings of URSI/IEEE/IRC XXI National Convention on Radio Science, Espoo, Finland, 2–3 October 1996, Report S 222, 255–256.
- Hyyppä J., Hallikainen M., Pulliainen J., 1993. Accuracy of forest inventory based on radar-derived stand profile. Proceedings of IGARSS’93, Tokyo, Japan, 18–21 August 1993, 2, 391–393.
- Hyyppä J., Hyyppä H., Inkinen M., 1997. Capabilities of multi-source remote sensing for forest inventory. Proceedings of 3rd International Airborne Remote Sensing Conference and Exhibition. Copenhagen, Denmark, 7–10 July 1997.
- Hyyppä J., Inkinen M., 1999. Detecting and estimating attributes for single trees using laser scanner, The Photogrammetric Journal of Finland, 16, 27–42.
- Hyyppä J., Kelle O., Lehikoinen M., Inkinen M., 2001. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners, IEEE Transactionson Geoscience and Remote Sensing, 39 (5), 969–975.
- Hyyppä J., Yu X., Hyyppä H., Vastaranta M., Holopainen M., Kukko A., Kaartinen H., Jaakkola A., Vaaja M., Koskinen J., Alho P., 2012. Advances in forest inventory using airborne laser scanning. Remote Sensing, 4 (5), 1190–1207.
- Kaartinen H., Hyyppä J., Yu X., Vastaranta M., Hyyppä H., Kukko A., Holopainen M., Heipke C., Hirschmugl M., Morsdorf F., Næsset E., Pitkänen J., Popescu S., Solberg S., Wolf B.M., Wu J.-C., 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4 (4), 950–974.
- Kaartinen H., Hyyppä J., 2008. EuroSDR/ISPRS Project, Commission II, “Tree Extraction”, Final Report, European Spatial Data Research Official Publication, Amsterdam, The Netherlands No. 53.
- Kaartinen H., Hyyppä J., Liang X., Litkey P., Kukko A., Yu X., Hyyppä H., Holopainen M., 2008. Accuracy of automatic tree extraction using airborne laser scanner data. Proceedings of SilviLaser 2008, 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, 17–19 September 2008, Edinburgh, United Kingdom, 467–476.
- Kalliovirta J., Tokola T., 2005. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fennica, 39 (2), 227–248.
- Kandare K., Dalponte M., Gianelle D., Chan J.C., 2014. A new procedure for identifying single trees in understory layer using discrete LiDAR data. IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 13–18 July 2014, 1357–1360.
- Kato A., Moskal L.M., Schiess P., Swanson M.E., Calhoun D., Stuetzle W., 2009. Capturing tree crown formation through implicit surface reconstruction using airborne lidar data. Remote Sensing of Environment, 113 (6), 1148–1162.
- Koch B., Heyder U., Weinacker H., 2006. Detection of individual tree crowns in airborne lidar data. Photogrammetric Engineering and Remote Sensing, 72, 357–363.
- Kraus K., Pfeifer N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53 (4), 193–203.
- Kwak D.-A., Lee W.-K., Cho H.-K., Lee S.-H., Son, Y., Kafatos M., Kim S.-R., 2010. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Research, 123 (4), 421–432.
- Kwak D.-A., Lee W.-K., Lee J.-H., Biging G.S., Gong P., 2007. Detection of individual trees and estimation of tree height using LiDAR data. Journal of Forest Research, 12 (6), 425–434.
- Lillesand T.M., Kiefer R.W., 1979. Remote Sensing and Image Interpretation. John Wiley & Sons, New York, USA, 612.
- Lim K., Treitz P., Wulder M., St.-Onge B., Flood M., 2003. LIDAR remote sensing of forest structure. Progress in Physical Geography, 27 (1), 88–106.
- Lindberg E., Holmgren J., Olofsson K., Wallerman J., Olsson H., 2013. Estimation of tree lists from airborne laser scanning using tree model clustering and k-MSN imputation, Remote Sensing, 5 (4), 1932–1955.
- Longuetaud F., Santenoise P., Mothe F., Senga Kiessé T., Rivoire M., Saint-André L., Ognouabi N., Deleuze C., 2013. Modeling volume expansion factors for temperate tree species in France. Forest Ecology and Management, 292, 111–121.
- Maclean G.A., Krabill W.B., 1986. Gross-merchantable timber volume estimation using an airborne lidar system. Canadian Journal of Remote Sensing, 12 (1), 7–18.
- Magnussen S., Boudewyn P., 1998. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28 (7), 1016–1031.
- Maltamo M., Eerikäinen K., Packalen P., Hyyppä J., 2006. Estimation of stem volume using laser scanning-based canopy height metrics. Forestry, 79 (2), 217–229.
- Maltamo M., Packalén P., Yu X., Eerikäinen K., Hyyppä J., Pitkänen J., 2005. Identifying and quantifying structural characteristics of heterogenous boreal forests using laser scanner data. Forest Ecology and Management, 216 (1–3), 41–50.
- Means J., Acker S., Fitt B., Renslow M., Emerson L., Hendrix C., 2000. Predicting forest stand characteristics with airborne scanning lidar. Photogrammetric Engineering And Remote Sensing, 66 (11), 1367–1371.
- Means J., Acker S., Harding D., Blair J., Lefsky M., Cohen W., Harmon W., McKee A., 1999. Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sensing of Environment, 67, 298–308.
- Meyer F., Beucher S., 1990. Morphological segmentation, Journal of Visual Communication and Image Representation, 1, 21–46.
- Morsdorf F., Meier E., Allgöwer B., Nüesch D., 2003. Clustering in airborne laser scanning raw data for segmentation of single trees. Remote Sensing and Spatial Information Sciences 34 (3/W13), 330–336.
- Næsset E., 1997a. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 52 (2), 49–56.
- Næsset E., 1997b. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment, 61 (2), 246–253.
- Næsset E., 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80 (1), 88–99.
- Nelson R., Krabill W., Maclean G., 1984. Determining forest canopy characteristics using airborne laser data. Remote Sensing of Environment, 15 (3), 201–212.
- Nelson R., Krabill W., Tonelli J., 1988. Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment, 24 (2), 247–267.
- Persson Å., Holmgren J., Söderman U., 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing, 68 (9), 925–932.
- Pitkänen J., Maltamo M., Hyyppä J., Yu X., 2004. Adaptive methods for individual tree detection on airborne laser based Canopy Height Model. Proceedings of ISPRS WG VIII/2 “Laserscanners for forest and landscape assessment”, Freiburg, Germany, 3–6 October 2004, 36 (8/W2), 187–191.
- Pollock R., 1996. The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown model. Ph.D. dissertation, Department of Computer Science, University of British Columbia, Vancouver, Canada.
- Popescu S.C., Wynne R.H., Nelson R.F., 2003. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 29 (5), 564–577.
- Pouliot D.A., King D.J., Bell F.W., Pitt D.G., 2002. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82 (2–3), 322–334.
- Recio J.A., Hermosilla T., Ruiz L.A., 2012. Automated extraction of agronomic parameters in orchard plots from highres olution imagery. Options Méditerranéennes, Série B. Etudes et Recherches, 67,161–174.
- Recio J.A., Hermosilla T., Ruiz L.A., Palomar J., 2013. Automated extraction of tree and plot-based parameters in citrus orchards from aerial images. Computers and Electronics in Agriculture, 90, 24–34.
- Reitberger J., Schnörr C., Krzystek P., Stilla U., 2009. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (6), 561–574.
- Rouse J.W., Jr., Haas R.H., Schell J.A, Deering D.W., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Progress Report, Remote Sensing Center, Texas A&M Univ., College Station,Texas, United States.
- Sambugaro M., Colpi C., Marzano R., Pellegrini M., Pirotti F., Lingua E., 2013. Utilizzo Del Telerilevamento Per l’Analisi Della Biodiversità Strutturale: Il Caso Studio Della Riserva Forestale di Clöise (Asiago, VI). Proceedings of the 17th Conferenza Nazionale ASITA, Riva del Garda, Italy, 5–7 November 2013, 1171–1178.
- Schardt M., Ziegler M., Wimmer A., Wack R., Hyyppä J., 2002. Assessment of forest parameters by means of laser scanning. International Archives of Photogrammetry and Remote Sensing, XXXIV (3A), 302–309.
- Schreier H., Lougheed J., Tucker C., Leckie D., 1985. Automated measurements of terrain reflection and height variations using airborne infrared laser system. International Journal of Remote Sensing, 6 (1), 101–113.
- Sexton J.O., Bax T., Siqueira P., Swenson J.J., Hensley, S., 2009. A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of south-eastern North America. Forest Ecology and Management, 257 (3), 1136–1147.
- Smith W., Wessel P., 1990. Gridding with continuous curvature splines in tension. Geophysics, 55 (3), 293–305.
- Soille P., 2003. Morphological Image Analysis: Principles and Applications, 2nd edition, SpringerVerlag, Berlin, Germany, 391.
- Solberg S., Næsset E., Bollandsås O.M., 2006. Single tree segmentation using airborne laser scan- Single tree segmentation using airborne laser scanner data in a heterogeneous spruce forest. Photogrammetric Engineering and Remote Sensing, 72 (12), 1369–1378.
- Straub B.-M., Heipke C., 2001. Automatic extraction of trees for 3D-city models from images and height data. Automatic Extraction of Man-Made Objects from Aerial and Space Images. Swiss Federal Institute of Technology, Zurich, Switzerland.
- Tesfamichael S.G., Ahmed F., van Aardt J.A.N., Blakeway F., 2009. A semivariogram approach for estimating stems per hectare in Eucalyptus grandis plantations using discrete-return lidar height data. Forest Ecology and Management, 258 (7), 1188–1199.
- Vaglio Laurin G., Chen Q., Lindsell J., Coomes D., Frate F. Del Guerriero L., Pirotti F., Valentini R., 2014. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 49–58.
- Vastaranta M., Kankare V., Holopainen M., Yu X., Hyyppä J., Hyyppä H., 2012. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 73–79.
- Vauhkonen J., 2010. Estimating crown base height for Scots pine by means of the 3D geometry of airborne laser scanning data. International Journal of Remote Sensing, 31 (5), 1213–1226.
- Vauhkonen J., Ene L., Gupta S., Heinzel J., Holmgren J., Pitkänen J., Solberg S., Wang Y., Weinakker H., Hauglin K., Lien V., Packalén P., Gobakken T., Koch B., Næsset E., Tokola T., Maltamo M., 2012. Comparative testing of single-tree detection algorithms under different types of for- Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 85 (1), 27–40.
- Véga C., Hamrouni A., El Mokhtari S., Morel J., Bock J., Renaud J.-P., Bouviere M., Durrieu S., 2014. PTrees: A point-based approach to forest tree extraction from lidar data. International Journal of Applied Earth Observation and Geoinformation, 33, 98–108.
- Velázquez-Martí B., Estornell J., López-Cortés I., Martí-Gavila J., 2012. Calculation of biomass volume of citrus trees from an adapted dendrometry. Biosystems Engineering,112 (4), 285–292.
- Viau A.A., Jang J.-D., Payan V., Devost A., 2005. The use of airborne LIDAR and multispectral sensors for orchard trees inventory and characterization. Information and Technology for Sustainable Fruit and Vegetable Production, FRUTIC 05, Montpellier, France, 12–16 September 2005, 689–698.
- Villikka M., Maltamo M., Packalén P., Vehmas M., Hyyppä J., 2008. Alternatives for predicting tree-stem volume of Norway Spruce using airborne laser scanning. The Photogrammetric Journal of Finland, 20 (2), 33–42.
- Wang L., Gong P., Biging G.S., 2004. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogrammetric Engineering and Remote Sensing, 70 (3), 351–358.
- Wang Y., Weinacker H., Koch B., Stereńczak K., 2008. Lidar point cloud based fully automatic 3D single tree modelling in forest and evaluations of the procedure. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B6b), 45–51.
- Wulder M., Niemann K.O., Goodenough D., 2000. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of Environment, 73 (1), 103–114.
- Wulder M., Niemann K.O., Goodenough D., 2002. Error reduction methods for local maximum filtering of high spatial resolution imagery for locating trees. Canadian Journal of Remote Sensing, 28 (5), 621–628.
- Yu X., Hyyppä J., Kaartinen H., Maltamo M., 2004. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment, 90 (4), 451–462.
- Yu X., Hyyppä J., Vastaranta M., Holopainen M., Viitala R., 2011. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (1), 28–37.
- Zhao K., Popescu S., 2007. Hierarchical watershed segmentation of canopy height model for multiscale forest inventory. Proceedings of the ISPRS Workshop "Laser Scanning 2007 and SilviLaser 2007", Espoo, Finland, 12–14 September 2007, 436–441.
- Zimble D.A., Evans D.L., Carlson G.C., Parker R.C., Grado S.C., Gerard P.D., 2003. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment, 87 (2–3), 171–182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e24b5a23-f21b-4165-9312-d940a400bfac