
AN OVERVIEW OF METHODS FOR TREE GEOMETRIC 
PARAMETER ESTIMATION FROM ALS DATA  
IN THE CONTEXT OF THEIR APPLICATION  
FOR AGRICULTURAL TREES1

Edyta Hadaś
Wrocław University of Environmental and Life Sciences 

Abstract. The aim of this paper is to overview and analyse existing methods for estimation 
of tree geometric parameters from Airborne Laser Scanning (ALS) data in the context of 
their possible application for agricultural areas. A detailed description of the estimation 
methodology proposed by various research groups is presented, including Canopy Height 
Model creation, tree identification, crown delineation in 2D and 3D, estimation of tree 
height, crown base height, crown diameters and crown volume. Efficiency and drawbacks 
of presented methods are identified. It is also analysed, whether the existing methods, ori-
ginally developed for forestry areas, are suitable for agricultural trees.
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INTRODUCTION

The rapid development of remote-sensing techniques began in the early 70s of the last 
century. The objective of those techniques is to collect Earth observations using non-con-
tact techniques [Lillesand and Kiefer 1979]. Originally, this term refers to passive optical 
or radar sensors mounted on aerial platforms or satellites [Campbell 2002]. Currently the-
re is a lot of active sensors available on the market (e.g. laser scanners), and some of them 
are mounted also on ground platforms. Remote sensing data are used for many different 
fields of science and economy, e.g. in environmental protection, geology, hydrology, agri-
culture, urban planning, meteorology.

One of the well documented areas of remote sensing application is forestry, for esti-
mation of tree geometric parameter and forest biomass. Since 80s of the twentieth century 
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laser and radar measurements were used for the inventory of forest areas [Nelson et al. 
1984, 1988, Schreier et al. 1985, Maclean and Krabill 1986, Bernard et al. 1987, Currie et 
al. 1989, Hallikainen et al. 1989]. Since the mid-90s a large number of scientific studies 
showed a great potential of laser scanning data [Hyyppä et al. 1993, 1996, 1997, Kraus 
and Pfeifer 1998], that allows to reliably and accurately estimate important biophysical 
parameters of forest: tree height [Næsset 1997a], crown shape and dimensions [Means 
et al. 2000], crown base height [Vauhkonen 2010], crown volume [Hinsley et al. 2002], 
stem diameter [Popescu 2003], wood volume [Magnussen and Boudewyn 1998, Means et 
al. 2000, Næsset 1997b, Hyyppä and Hyyppä 1999] and other parameters related with the 
structure and the distribution of trees [Zimble et al. 2003, Maltamo et al. 2005]. First stud-
ies on the identification of individual trees appeared in the late 90s [Hyyppä and Inkinen 
1999]. Initially, the studies involved only coniferous forests, while the first results for 
single tree recognition in deciduous forest appeared in [Brandtberg et al. 2003, Gaveau 
and Hill 2003]. With the appearance of robust methods for image processing, research-
ers started to classify tree species [Brandtberg et al. 2003, Holmgren and Persson 2004] 
and to measure the growth and crop of trees [Yu et al. 2004] by combining images with 
airborne laser scanning (ALS) data. As the years passed, the accuracy and the density of 
ALS data increased, allowing to precisely estimate parameters of forest areas and to use 
these parameters for forest planning and management of forest in many countries. It was 
proved by Dalponte et al. [2014b] that better results (in the sense of percent of correctly 
detected trees) can be obtained from ALS data analysis than from multispectral images 
of high resolution.

Monitoring of forest areas is of great importance for environmental protection and 
climate research [Yu et al. 2011], because trees are essential to maintain the proper car-
bon balance [Houghton et al. 2009]. Interest in biomass estimation is linked to forest 
health, photosynthetic activity and other processes related to the carbon cycle [Sexton 
et al. 2009]. For several years, there is a growing demand for continuous monitoring of 
forest condition [Houghton et al. 2009]. Currently, there are two main approaches related 
with estimation of the parameters of forest areas:

area based approach (ABA), typically providing data at stand level;1. 
individual tree detection (ITD) approach where individual trees are of interest.2. 

The procedure for data acquisition in ABA approach involves the use of ALS data 
and field plots, for which some tree classical measurements were performed. Parameter 
estimation is based on statistical relations between field measured values and predictor 
features obtained with remote sensing techniques [Means et al. 1999, Næsset 2002, Lim 
et al. 2003]. The results of ABA estimation are e.g. average tree height, average wood 
volume and number of trees in unit area. The unit area in ABA is usually a plot used to 
collect the measurements  in the field. The results of plot analysis are presented in a grid 
format, which size depends on the size of train field, for which classical measurements 
were performed. The final results of stand-level forest inventory are obtained by weighted 
aggregation of the grid-level estimations inside the stand. The advantages of remote sens-
ing of forest parameters compared to traditional stand-wise field inventory (SWFI) are: 
higher precision of estimated parameters [Holopainen et al. 2010], lower costs, fast re-
sults for large areas.

The ITD approach requires ALS data of high density, which increases the cost of 
data acquisition and storage. However, this approach allows to estimate tree geometric 
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parameters with higher accuracy, which results in more reliable estimation of parameters 
of interest. Another advantage of ITD over ABA is a reduced demand of field measure-
ments. The ITD approach started from manual interpretation of analogue aerial images 
[Gougeon and Moore 1988]. Later on, a lot of research were performed on single tree 
identification based on large scale aerial photos or high-spatial resolution remotely sensed 
imagery. The main challenge was to automate the single tree identification process, by ap-
plying various identification algorithms [Erikson and Olofsson 2005]. The main methods 
used for extraction of  individual trees from photos or images are: local maxima detection 
[Dralle and Rudemo 1996], local maxima filtering with fixed or variable window sizes 
[Wulder et al. 2002, Pouliot et al. 2002], valley-following [Gougeon 1995], edge detec-
tion using scale-space theory [Brandtberg and Walter 1998], template-matching [Pollock 
1996], local transect analysis [Pouliot et al. 2002], watershed segmentation [Wang et al. 
2004]. The effectiveness of algorithms relies directly on the characteristics of study area 
(canopy spectral properties, canopy structure complexity), quality of data and weather 
conditions during data acquisition (images of large exposition may saturate values of 
biophysical parameters and shadows impede object detection).

Still various research groups are attempting to characterize forest inventory param-
eters with ABA or ITD approaches [Angelo et al. 2010, Holmgren et al. 2012, Dupuy et 
al. 2013, Longuetaud et al 2013, Grafström and Ringvall 2013]. Vastaranta et al. [2012] 
proposed to use ITD results to improve ABA analysis. It is important to note, that trees 
are not anthropogenic objects so their geometry is very complex: without straight and per-
pendicular lines, different tree species have different crown morphologies and even the 
crown structure of a single species vary depending on local conditions [Heurich 2008]. 
Tree crowns vary significantly in form and size, often the crowns of adjacent trees form 
a single common crown  with a fuzzy boundary between trees. On the other hand single 
tree may form broad or layered crown and even multitrunk trees exist. For these reasons, 
each tree should be considered as a unique object, and many unusual cases cannot be rec-
ognized correctly from two-dimensional imagery. Some identification problems can be 
overcome with ALS data. Because the direct three-dimensional measurement of canopy 
coordinates is possible, so the geometrical, rather than spectral analysis are performed 
[Chen et al. 2006, Véga et al. 2014].

Some comparison of ALS based methods for single tree identification in various con-
ditions can be found in [Kaartinen and Hyyppä 2008, Vauhkonen et al. 2012, Kaartinen 
et al. 2012]. Although ALS point cloud is a source data, tree identification is performed 
usually on the ALS based raster product – Canopy Height Model (CHM). It was proved 
by Kaartinen and Hyyppä [2008] that the choice of the method for single tree identifica-
tion affects the final accuracy of tree location and height determination and consequently, 
overall quality of inventory. It was also noticed in [Kaartinen et al. 2012] that methods 
based only on height analysis (CHM) are not suitable to identify suppressed trees. In 
this case analysis on discrete ALS points or full-waveform data are of great potential, as 
presented in [Reitberger et al. 2009, Wang et al. 2008, Gupta et al. 2010a]. The perform-
ance of algorithms to identify single trees from ALS data depends mainly on forest stand 
characteristics [Falkowski et al. 2008, Kaartinen et al. 2008], however spatial resolution 
of remote sensing data is also of importance [Wulder et al. 2000, 2002, Tesfamichael et 
al. 2009].
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The aim of this paper is to overview and analyse methods for single tree identification, 
crown delineation and estimation of tree geometric parameters based on ALS data. It will 
be also analysed, whether the existing methods, originally developed for forestry areas, 
are suitable for agricultural trees. Agricultural trees are considered here as trees that are 
valuable in agriculture due to fruit production, e.g. orange trees, olive trees, apple trees.

TREE DETECTION

The procedure of individual tree detection is generally composed of two stages: creating 
canopy height model (CHM) from ALS data and searching for local maxima of CHM 
assumed to be treetops. There is a number of various methods and strategies applied for 
both stages, and many factors influencing the quality of results were taken into account 
by researchers to obtain the optimum solution. Details are presented in following subsec-
tions.

CREATING CHM

Canopy height model represents a rough surface of the canopy. It is calculated by sub-
tracting the height value of the digital terrain model (DTM) at each pixel from the height 
value of digital surface model (DSM), so the CHM heights are the relative heights (or 
normalized heights) above the ground. The quality of CHM depends directly on the qu-
ality and spatial resolution of both DTM and DSM.

A common strategy to create a CHM raster from discrete, normalized ALS points is  
the minimum curvature method [Smith and Wessel 1990], applied e.g. in [Solberg et al. 
2006, Kaartinen and Hyyppä 2008]. The typical approach is to use the first pulse return 
from ALS data and to create a CHM as a raster. With this method, the CMH surface is 
obtained iteratively, starting from a plane, and then iteratively smoothed closer and closer 
to fit the data. The characteristic of this method is that the created surface does not cover 
the source points and allows the surface to extend upwards over the uppermost points 
over a tree top. 

In literature, another methods of CHM creation can also be found. Gupta et al. [2010a] 
implemented active surface algorithm – a physically-based deformable model, to deform 
the surface of raw CHM model by topological constraints. They used trial and error ap-
proach to tune the final results. Persson et al. [2002] proposed to use active contour al-
gorithms (also called “snakes”) that is widely used in image processing for delineating 
object outline from a noisy image. In this way they were able to remove points that were 
not reflected from trees.

SEARCHING FOR TREETOPS

Treetops are identified as local maxima on CHM. Local maxima on the raster is usually 
considered as a pixel that is surrounded by 8 pixels of smaller height than itself. To re-
move the noise from the raster, a low-pass smoothing filter is applied. Usually a Gauss 
filter is used in forest studies. After the filter is applied, treetops can be identified and 
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they become seed points for further processing, e.g. for tree crown delineation algorithms 
[Morsdorf et al. 2003]. An alternative method for tree tops identification was presented in 
[Yu et al. 2011]. For CHM raster that was previously smoothed with a Gauss filter, mini-
mum curvatures were calculated. Pixels of higher minimum curvature than neighbouring 
pixels were assumed to be treetops.

It is necessary to define several parameters for the smoothing filter, one of them is 
a window size in which the smoothing is performed. Too small window size results in 
commission errors, when local treetops of the same tree are classified as separate objects, 
so more trees are identified. On the other hand, large window size results in omission 
errors, that is, some trees are not identified [Zhao and Popescu 2007]. The size of the 
window should depend on a CHM resolution and expected tree crown diameters. While 
the resolution of the CMH usually depend on the ALS data, crown diameters are not 
known unless some field measurements are performed or some expert knowledge on for-
est stand characteristics is provided. A correct definition of the window size is particularly 
important for suppressed or concentrated trees [Morsdorf et al. 2003]. The most common 
parameter is 3×3 squared window, however 5×5 and 7×7 windows were also used.

Another parameters that needs to be defined for the Gaussian filter is the number of 
iterations, that affects the intensity of raster smoothing. Solberg et al. [2006] investigated 
an optimum number of smoothing iterations by applying Gaussian low-pass filter 1, 3, 
5 or 7 times with a window size of 3×3 pixels. It was found, that the best results were 
obtained when the filter was applied 3 times, taking into account the number of cor-
rectly identified trees and the distance of identified seed points from measured treetops. It 
was noticed by the authors, that setting the degree of smoothing of the CHM represents  
a crucial balance between two criteria of success, i.e., omission and commission. A mild 
smoothing results in a high fraction of identified trees but it leaves too many “false” trees, 
while rough smoothing leaves a high fraction of unidentified trees without “false” trees. 
The number of iterations may also be defined by the expected level of filter smoothing, 
measured as a standard deviation σ of the Gaussian distribution. In [Persson et al. 2002] 
various setting of σ was applied: 4/π, 6/π and 8/π. The best results were obtained for σ 
= 4/π, so that the most trees were detected but also some large trees had more than one 
maximum. Another Gaussian scaling was proposed in [Koch et al. 2006]. First, the CHM 
was divided into two classes with a threshold at the height of 20 m. For each class differ-
ent sigma was applied and the results were merged after the identification was performed 
separately in each class. The best results were obtained with σ = 0.81 for small trees 
and σ = 2.0 for large trees. Pitkänen et al. [2004] showed that σ of the Gaussian filtering 
should be adjusted visually before tree selection. It means that not only a window size and 
weights influence the results, but also a number of smoothing iterations should be tuned 
to each study area.

An interesting approach to identify trees was proposed in [Hyyppä et al. 2012]. In 
addition to classical CHM, authors created also 3 surfaces from the last pulse returns, 
representing minimum, mean and maximum height of a last pulse in a pixel. The idea was 
to use the canopy penetration capability of the last pulse returns to identify overlapping 
trees. The authors stated that the last pulse is more sensitive to lower canopy levels and 
a significant drop (at least 2 m) in the last pulse elevation can be found for overlapping 
trees. An improvement of several percent was obtained when minimum last pulse height 
surface was used intead of CHM obtained with the first pulse. The improvement increased 
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with the increasing density of the forest stand and decreasing diameter breast height. The 
disadvantage of this approach is the large number of commission errors, caused by the 
gaps within individual tree crowns.

Finally, it was proposed by Gupta et al. [2010a] not to apply a Gaussian smoothing fil-
ter, but to filter out incorrect local maxima based on threshold distance. The threshold dis-
tance is a forest dependent parameter. It should be defined according to forest conditions 
and tree species. For trees having wider canopies, the distance should be large, between 
4 to 6 m, because local maxima from smaller peaks most likely represent branches of the 
same tree. For small canopies a distance of 2 to 4 m was recommended by the authors. 

Table 1 presents the comparison of selected features of treetop identification strategies, 
that were applied by various research groups cited above. One can see that a 3x3 Gaussian 
smoothing was the most common filtration method, but the definition of times that the 
filter was run varies. Finally, usually a single layer CHM model was created, while the 
two-layers model (splicing CHM at a defined height and analyse both layers separately) 
was recommended in studies that concerned trees of significantly varying heights.

Table 1. Comparison of tree detection strategies 

Author Filtration method Filter runs CHM creation 
method CHM division

Hyyppä et al. 2001 Gauss 3x3 N/A N/A none

Morsdorf et al. 2003 Gauss 3x3 N/A N/A none

Persson et al. 2002 Gauss 3x3 σ = 4/π, 6/π, 8/ π ACA none

Koch et al. 2006 Gauss 3x3 σ = 0.81, σ = 2.0 N/A 2 (0–20 m, >20 m) 

Gupta et al. 2010a threshold  
distance – ASA 2 (wide & small 

crowns)

Solberg et al. 2006 Gauss 3x3 3 MC none

Kaartinen and Hyyppä 2008 Gauss 3x3 3 MC none

Yu et al. 2011 Gauss 3x3 σ N/A none

Hyyppä et al. 2012 Gauss 3x3 N/A N/A, last 
return none

N/A – information not available, ACA – active contour algorithm, ASA – active surface algorithm,  
MC – minimum curvature algorithm

TREE CROWN SHAPE

After the treetop are identified, as described in the previous section, tree crown shape can 
be retrieved with a two-dimensional contour, as a crown shape projection to (x,y) plane. 
This step is called in the literature as tree crown delineation and is usually based on CMH 
processing. Alternatively, for dense ALS data, it is possible to present the crown shape 
in 3D.
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2-DIMENSIONAL APPROACH

Region growing algorithm

One of the most popular methods for tree crown delineation is a region growing algori-
thm, used e.g. in [Hyyppä et al. 2001, Solberg et al. 2006, Kaartinen and Hyyppä 2008]. 
The algorithm was originally designed for an image segmentation, so it operates on the 
CHM raster. The algorithm starts from the grid points containing identified treetops – the-
se pixels become the seed pixels for the segments. The algorithm runs iteratively, until the 
final segments are defined, that is when there is no change between two iterations or all 
CHM pixels already belong to a segment. In each iteration, pixels are joined to an existing 
segment if 2 conditions are met: 1) the pixel is a neighbour (in x, y or diagonal direction) 
to any pixel inside the segment, 2) the joined pixel height is lower than the height of the 
neighbouring point inside the segment. In this way the regions are gradually extending 
downwards and outwards in the CHM.

Several modifications of region growing algorithm impose additional conditions for 
joining the points e.g. a pixel will be joined to the segment only if the vertical slope 
between the pixel and the neighbouring pixel inside the segment is the steepest slope 
between the pixel and any neighbouring pixel. Additionally, a star shape restriction is 
often included to avoid strange object shapes; accepted are star shape object, in which any 
point inside the shape is “visible” directly from the seed point. The star shape restriction 
was used e.g. by Solberg et al. [2006] and Kaartinen and Hyyppä [2008]. Finally, in case 
a pixel can be joined to more than one segment, it is connected to the segment for which 
the distance to the seed point is the smallest.

The classical growing region algorithm, in which a segment by segment processing is 
performed, is sensitive to seed point location and the order of segment processing, partic-
ularly when object edges are not clear e.g. for overlaying trees. Therefore a simultaneous 
region growing technique have been developed, in which all regions are allowed to grow 
at the same time. This approach is computationally less effective, which may become  
a limitation in case of processing some big areas.

A comparative analysis of several region growing algorithm modifications can be 
found in [Hyyppä et al. 2001]. Authors run the algorithms on the same test area and 
found, that methods using region growing algorithm allowed to correctly segment up to 
50% of crowns, while 45% of crowns were merged, 4% of crowns were split and 1% was 
not segmented at all.

Watershed transformation

The idea of watershed transformation was introduce in [Beucher and Lantuejoul 1979]. 
This approach consists of placing a water source in each regional minima of the relief to 
flood the entire area from the source and to build barriers when different water source 
meet. In other words, the watershed of a relief corresponds to the limits of the basins of 
the water drops. This method is now a well-established method for image segmentation 
[Meyer and Beucher 1990]. For crown diameter delineation a watershed segmentation is 
performed on the negative CHM with low elevation points filtered out [Zhao and Popescu 
2007, Kwak et. al. 2010, Sambugaro et al. 2013], called the segmentation function. 
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The typical problem of classical watershed transformation is the over-segmentation 
problem. Therefore Soille [2003] introduced a marker-controlled watershed segmenta-
tion, in which local maxima of the input image are replaced by the set of user defined 
markers, called marker function. The segmentation algorithm ensures a 1:1 relationship 
between the markers and resulting segments, so the segmentation success depends on how 
accurately the object markers represent the objects [Ene et al. 2012]. Appropriate defini-
tion of marker and segmentation functions for marker-controlled watershed segmentation 
resulted in delineated boundaries of individual crowns [Wang et al. 2004]. Schardt et al. 
[2002] proved, that this method can be applied also for deciduous tree species, despite 
their complex canopy structure, only if appropriate marker and segmentation functions 
are generated from ALS data. 

Another modification was proposed by Ene et al. [2012]. Authors applied adaptive 
low-pass filtering for regional maxima to reduce the number of segments. They used the 
extended maxim transform [Soille 2003] to filter out regional maxima with values below 
a defined height threshold. The value of this height threshold can be obtained empirically 
(as suggested by Chen et al. [2006] and  Kwak et al. [2007]), or directly from CHM analy-
sis. In the latter case, Dalponte et al. [2014b] suggested to calculate CHM height residuals 
from locally smoothed CHM and set the height threshold as a 25th percentile obtained 
from the distribution of absolute residuals.

It was found by Yu et al. [2011] that the marker-controlled watershed segmentation 
performs better for large trees and the percentage of detected crown contours decreases in 
dense forests. In [Ene et al. 2012] different results were obtained for top, middle and bot-
tom layers of forest. In [Dalponte et al. 2014a] it was shown that the results very depend-
ing on tree species. The efficiency of watershed transformation found in various studies 
is 51–69% for coniferous trees and 40% for deciduous trees.

Pouring algorithm

The pouring algorithm resembles water being poured onto mountains, thus being similar 
to an inverted, classical watershed-algorithm.  Starting from the seed points, regions are 
extended by pixels of lower or equal height to the neighbouring pixel that belongs to the 
segment [Koch et al. 2006]. This step produces a first approximation of the crown shapes, 
with many very small and many vary large regions. The small ones are joined to larger 
segments, usually based on the distance criteria. Then all segments are tested for being  
a single tree or a group of trees by fitting an ellipse to the segment. A segment is consi-
dered as a group, if the ellipse diameter ratio exceeds 2.5 and the segment area is at least 
3 times larger than the defined minimal tree crown area. The congregations are disjoined 
following the approach developed by Straub and Heipke [2001] for tree groups within 
settlements. The biggest inner circle in the segment is detected and subtracted from the 
segment iteratively, until the segments area is below the double minimal tree crown area. 
Then the circular segments are expanded until regions touch each other, touch original 
border or until the height difference between new and old border do not exceed 60 cm. 
Finally the tree areas can be reduced based on the minimum slope threshold between the 
treetop and border point, as proposed by Friedlaender [2002]. It is typical for pouring 
algorithm that crown areas are overestimated, and the performance for coniferous trees 
(<87% of detected tree crowns) is much better than for deciduous trees (<62%).
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3-DIMENTIONAL APPROACH

Voxel space

Transition into voxel space means that the 3-dimensional study space is divided into 
rows, columns and layers, an then the normalized ALS point cloud is portioned into re-
gular boxes called voxels, representing a fragment of real world space. ALS points inside 
each voxel are resampled, so that each voxel is represented by the number of ALS points 
inside. In this way voxels from the same layer can be recognized as a raster, representing 
the ALS density. The idea of tree crown determination presented by Wang et al. [2008] 
is based on the analysis of voxel layers, starting from the top to the bottom layer. For the 
top layers, high density of ALS data corresponds to the tree crown, while the process 
becomes more complicated for middle and bottom layers, where tree crown may overlap 
each other. The top layer contours are treated as reference regions and seed points are 
the voxels of the highest ALS density. Then a hierarchical morphological opening and 
closing process with a group of structuring elements is performed. Voxels of lower ALS 
density are included into structures iteratively. For middle and bottom layers, another 
morphological algorithm was proposed to stop the structures growing: the reference re-
gions are dilated by a defined radius and the structure enlargement is stopped when the 
structures touch each other. Some improvement of voxel space approach was proposed 
by Vauhkonen et al. [2012], who supplement the approach with tree crown merging algo-
rithm, based on the relations between horizontal distance between treetops, their height 
difference, crown base height difference and crown radius.

The defect of this approach is that if a tree is not recognized in the top layers e.g. 
because it is a low tree, it will probably not be detected as separated tree but included 
into one of the nearby tree. It was also noticed, that for wide trees, the process resulted 
in crown split. The results are also sensitive to voxel dimensions – small horizontal di-
mension of voxels improves the accuracy but is more prone to crown splits, thick lay-
ers improve the delineation of deciduous trees but limit the 3D representation. It was 
proposed by Wang et al. [2008] that the approach may be improved if voxel space is not 
uniform and growing structure limiting radius varies between layers. It was noticed, that 
the method performs better for old trees (>80% of detected tree crowns) than for younger 
trees (55–75%).

k-means approach

k-means algorithm aims to minimize the total intra-cluster variance or the squared er-
ror. In the contrary to previously described methods, it operates directly on ALS point 
cloud to minimize the sum of distances between each point and  its closest centroid of 
existing cluster [Gupta et al. 2010a]. After the ALS point cloud is clustered, each cluster 
is reconstructed with convex hull approach [Barber et al. 1996] into 3D convex polotype 
that consists of triangular surfaces. The convex hull algorithm returns a set of points, that 
create the smallest convex containing all points in the cluster. Therefore, the 3D convex 
polotype can be considered as a 3D representation of tree crown [Kwak et al. 2010]. 
The algorithm requires a dense ALS point cloud to outputs reliable results, so due to its 
computational complexity big regions cannot be processed efficiently with current com-
putational capabilities. 
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Because k-means algorithm is based on Euclidian distance, it tends to create ball 
shaped clusters, as presented by Lindberg et al. [2013]. At the same time, for coniferous 
tree the height of a crown is usually several times larger than the diameter of this crown 
[Morsdorf et al. 2003]. For this reason, k-means is performed on the Z-scaled CHM to 
transform tall tree crowns into ball objects. After the k-means algorithm is performed, the 
height value of the clustered data are scaled-up to its original. It was shown in Gupta et 
al. [2010b] that scaling down the height value improves the results of tree crown delinea-
tion. The downscaling factor is usually based on tree species, field measurement or visual 
inspection of the results. There is no universal scaling factor value or automatic method 
for its adjusting, which is a serious drawback of this approach. 

In the classical k-means approach, the algorithm creates k clusters without initial infor-
mation on cluster centre location. In Morsdorf et al. [2003] a modified k-means approach 
was proposed, in which the cluster seed points were defined by the treetops detected from 
CHM. Gupta et al. [2010b] compared the classical and modified k-means, and noticed 
that the modified approach outperforms the classical one.

Kandare et al. [2014] proposed k-means clustering separately on the vertical layers 
with a user-defined distance. Then the clusters are aggregated based on the spatial rela-
tions and separated into two cluster based on Kernel density function. The clusters are 
merged along vertical direction, following the rule, that two cluster are merged if their 
horizontal projections are overlapping polygons for more than 10%. Finally, the convex 
hull is performed, to create a tree crown shape from merged clusters.

TREE GEOMETRIC PARAMETERS

After the tree crown is delineated, points that correspond to individual tree can be extrac-
ted from ALS point cloud. Than some tree geometric parameters can be estimated from 
points in the object, namely tree height, crown base height, crown diameters and crown 
volume. The idea of tree geometric parameter estimation from ALS data is presented 
in Figure 1. These parameters are useful e.g. for stem volume estimation [Maltamo et 
al. 2006, Villikka et al. 2008, Allouis et al. 2013], tree biomass estimation [Persson et 
al. 2002, Vaglio Laurin et al. 2014] and breast height diameter [Kalliovirta and Tokola 
2005].

TREE HEIGHT

The most straightforward approach to estimate tree height is to use the height of the 
highest point belonging to the segment [Morsdorf et al. 2003, Solberg et al. 2006] or 
use the height of the top voxel in case of voxel transition [Wang et al. 2008]. Persson et 
al. [2002] investigated, whether the size of laser beam influence the results. He found, 
that although small laser beams are more suitable for dense forests, they do not affect 
tree height estimates (RMSE = 0.63 m and correlation coefficient between estimated and 
measured values was 0.99). If some field measurements of tree height are available in the 
study area, a normal linear regression model can be derived and applied to estimate tree 
heights for other trees [Morsdorf et al. 2003, Heurich 2008]. 
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CROWN BASE HEIGHT

The classical approach to estimate crown base height is to filter out ALS points belon-
ging to the ground and low vegetation and then to use the height of the lowest point. The 
difference between  the highest and the lowest point in the object is called crown depth, 
and crown base height calculated as a difference of tree height and crown depth is called 
crown insertion [Kaartinen and Hyyppä 2008].

Fig. 1. The idea of tree geometric parameter estimation

Another approach is to use all points in the object  and estimate crown base height as 
the height of a point, for which there is a biggest height difference to a neighbouring point 
below [Solberg et al. 2006]. Similar approach was proposed by Kaartinen and Hyyppä 
[2008]. A point cloud of first and fourth echoes was used to calculate deciles (eleven va-
lues that divide the sorted data into ten equal parts) of the z value and differences between 
adjacent deciles. The crown base height was defined as the decile which had the largest 
difference below itself, when excluding the uppermost two deciles.
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CROWN DIAMETER

The crown diameter is usually estimated directly from the crown shape as the average 
of two values measured along two perpendicular directions from the location of the tree 
top to crown border [Kaartinen and Hyyppä 2008]. It can also be computed as a doubled 
mean value of four crown radii taken from the treetop in the cardinal directions [Solberg 
et al. 2006]. Alternatively, crown diameter can be estimated based on the empirical re-
lation between tree height and crown diameter for trees of a certain species [Popescu et 
al. 2003]. It can also be derived from a regression model build on the basis of field me-
asurements and selected tree geometric parameters, including tree height [Kaartinen and 
Hyyppä 2008].

CROWN VOLUME

For 3D approach crown volume is directly estimated as convex hull volume [Morsdorf 
et al. 2003] or voxel volume [Wang et al. 2008]. If 2D approach was applied for crown 
delineation, crown volume can be calculated as the volume between the CHM and crown 
base height for each object. In this case crown area (calculated as the area of crown shape 
polygon) is multiplied by the corresponding crown depth [Kaartinen and Hyyppä 2008]. 
Kato et al. [2009] estimated crown volume with a regression model and wrapped surface.

RANDOM FORESTS

Although tree geometric parameters can be estimated independently or consecutively, 
they can also be estimated simultaneously using random forest algorithm [Breiman 2001] 
– a nonparametric regression approach, well-known in computer machine learning tasks. 
A random forest is composed of a set of decision trees build on the basis on training data. 
Each decision tree is a set of rules that split the feature space, thus creating multi-level re-
gression model. The decision trees are built in a way that ensures maximum randomness – 
samples from training dataset as well as features at each node of decision tree are selected 
randomly. A part of training data that was not used to build any decision tree (usually set 
to 20% of all samples) is used to predict the accuracy of random forest estimates [Yu et al. 
2011]. After the random forest is created, ALS point cloud can be classified with random 
forest – it is classified to the class, for which it was classified most often by all decision 
trees. Random forest application for tree geometric parameters estimation was presented 
e.g. in Yu et al. [2011] and Heurich [2008]. Forzieri et al. [2009] proposed a simplified 
approach, in which a multi attribute decision making is created during a calibration phase, 
that is based on field measurements.

QUALITY OF THE RESULTS

The accuracy of estimated parameters reported in selected papers is presented in Table 2.  
Although Table 2 presents studies performed with different methods and for different 
areas, it gives a rough vision about the quality of results. Moreover, various quality indi-
cators are provided in papers, among which the RMSE is the most frequent one.
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Table 2. Accuracy of tree geometric parameters estimated from ALS data reported in selected 
studies

Tree location Tree height Crown base height Crown diameters

Morsdorf et al. 2003 Mean = 1.12 m 
Std = 0.64 m RMSE = 0.60 m

Solberg et al. 2006 RMSE = 1.2 m RMSE = 3.5 m RMSE = 1.1 m

Persson et al. 2002 RMSE = 0.63 m RMSE = 0.61 m

Heurich 2008 Mean = 0.54 m 
Std = 1.44 m

Mean = 0.25 m 
StdDev = 1.02 m

Kaartinen  
and Hyyppa 2008

Mean: 0.6–1.4 m 
Std: 0.5–1.3 m RMSE: 0.6–4.6 m RMSE: 5.4–9.0 m relative error < 45%

Kato et al. 2009 RMSEC = 1.56 m 
RMSED = 1.41 m

RMSEC = 1.62 m 
RMSED = 1.54 m

RMSEC = 0.75 m 
RMSED = 2.89 m

Popescu et al. 2003 RMSEC = 0.68 m 
RMSED = 0.70 m

RMSEC = 1.36 m 
RMSED = 1.41 m

Std – standard deviation, RMSE – root mean square, C – coniferous, D – deciduous

Detected tree location with respect to field measurements differs on average between 0.5 
to 1.4 m with standard deviation between 0.5 up to 1.44 m. Tree location is usually used 
as a seed point for crown delineation, therefore as long as the crown are wide enough, 
this accuracy seems to be sufficient. RMSE of tree height varies from 0.60 to 4.6 m (ma-
jority of research provided RMSE < 1.6 m), and small differences in results are reported 
between coniferous and deciduous trees. It is also reported in majority of studies, that 
tree heights are underestimated. This in in the contrast with crown base heights that are 
usually overestimated with RMSE varying from 0.61 to 9.0 m. Crown diameters are esti-
mated with RMSE between 0.75 to 2.89 m, and the results are less accurate for deciduous 
trees than for conifers. Because crown diameter estimates are directly related with tree 
contour, crown delineation strategy should be chosen carefully.

APPLICATION FOR AGRICULTURE

The knowledge on tree geometric parameters supports efficient management and agricul-
tural production [Doruska and Burkhart 1994]. It allows to predict harvest, to plan dosage 
of fertilizers, to manage irrigation and pruning actions [Estornell et al. 2014]. However, 
it should be noted that the structure of agricultural trees is different that the structure of 
forest trees, because agricultural trees usually have short stem and biomass is concentra-
ted in the crown [Berg et al. 1997]. There are no allometric equation that relate certain 
parameters like volume or biomass with typical measurements taken in the field. For this 
reason, it should be investigated, whether the existing methods, originally developed for 
forestry areas, are suitable for agricultural trees.

So far, only several studies were performed on estimation of tree geometric parame-
ters for individual agricultural trees. Usually researchers concentrated on ABA method, 
in which ALS data was supported with high-resolution aerial photos. Recio et al. [2013] 
proposed a plot-based approach to detect fruit trees and extract tree and plot-based para-
meters e.g. fraction of tree cover, planting patters, number of trees. The method was based 
on k-means algorithm followed by the automatic detection of the classes representing 
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trees. Recio et al. [2012] presented a method for automated extraction of agronomic pa-
rameters, suitable for agricultural management, inventory and irrigation planning at plot 
level. The processing is based on k-means classification of Normalized Difference Vege-
tation Index [NVDI, Rouse et al. 1973] image. Multispectral images analysis can also be 
combined with ALS data to automatic NDVI calculation for individual trees in an apple 
orchard using growing regions algorithm from identified treetop and analysing the pixels 
inside the crown border [Viau et al. 2005].

Estornell et al. [2014] showed ABA for tree height and biomass estimation of olive 
trees, using sparse ALS data (0.5 pt m-2). They performed biomass measurements for se-
lected trees in the field, following the strategy proposed by Velázquez-Marti et al. [2012]. 
Then they used FUSION software to estimate plot parameters: maximum height, mean, 
standard deviation, coefficient of variation, kurtosis, skewness, interquartile distance, 
percentile values (5th, 20th, 40th, 50th, 60th, 80th, 95th) and ALS point distribution on 
selected horizontal layers (0.5–1.5 m, 1.5–2.5 m, 2.5–3.5 m, 3.5–4.5 m). They created  
a regression model explaining 70% of variability of estimated parameters. 

In Fieber et al. [2013] authors showed a potential of full-waveform ALS data to classi-
fy trees, grass and ground points in orange orchard. They used backscattering coefficient 
with pulse width and obtained 91% of classification efficiency.

DISCUSSION

The paper presents an overview of methods for estimating tree geometric parameters 
from ALS data. A variety of methods for treetop identification, crown delineation in 2D 
and 3D approach, estimation of tree geometric parameters, namely: tree height, crown 
base height, crown diameter and crown volume are discussed here.

Among the overviewed and cited papers, most of the studies concerned coniferous 
forests (74%) or mixed forest (21%), while only few studies investigated deciduous trees 
(5%). Figure 2 presents the frequency of investigated tree species in study area by rese-
archers after year 2000. One can see that coniferous trees (mainly spruce and pine) were 
present in almost half of the studies, while deciduous trees (mainly birch, oak and beech) 
were present in less than one third of overviewed papers. It is important to note, that deci-
duous trees were present mainly in studies that concern mixed forest in which coniferous 
trees were still dominant species. This is because area of studies were usually located in 
Scandinavian countries (Finland, Sweden, Norway) and Alpine countries (south Germa-
ny, Switzerland, Austria and Italy). Although the forest type frequency and tree species 
composition presented here were made based on limited number of papers, that may be 
considered as representative ones, showing that the methods are mainly developed for co-
niferous forest areas. The dominance of coniferous in forestry studies is a potential threat 
in applying forestry methods for agricultural trees, which are deciduous trees. It should be 
expected, that the methods will not be optimum in the sense of the quality of the results 
and complexity of the processing strategy.

If available, information about the ALS data density and efficiency of single tree de-
tection was extracted from the research cited in this paper (only the papers published 
after year 2000 were analysed). The objective of Figure 3 was to analyse if there is  
a significant improvement in tree detection methods over last years. Figure 4 was pre-
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pared to study if high density ALS data improves the results. Results are presented sepa-
rately for coniferous and deciduous trees. It was found that the success rate of detected 
trees over last decade varies between 44 to 89% for coniferous trees and between 40 to 
64% for deciduous trees. This is a serious drawback of the existing methods, especially in 
the context of agricultural studies, in which deciduous trees are of interest. No significant 
improvement was observed over the last decade (see Fig. 3). Moreover, as shown in Fig-
ure 4, processing of ALS data of higher density does not improve the tree identification 
process and even with low density data it is possible to obtain very good results. This is  
a very promising result in the context of agricultural studies, because low density data can 
be acquired fast, in regular basis and with reasonable cost. Moreover, for many regions 
and countries low density ALS data are available free of charge, however their topicality 
may be poor, because the update frequency is usually low.

Fig. 2. The incidence of tree species among overviewed papers published after year 2000

In Table 1 it was shown, that the general approach of identifying treetops from ALS 
data, that are further used as a seed points for crown delineation, was based on the local 
maxima detection at CHM. It should be noticed  that CHM is a raster created from ALS 
data and it’s resolution should be adjusted to ALS density. The quality of CHM depends 
directly on the quality and spatial resolution of both DTM and DSM. Usually a low-
pass Gaussian filter is performed on the CHM raster to remove the noise. Therefore,  
it is required to define several processing parameters for this filter: window size, window 
shape and pixel weights. The disadvantage of this approach is that optimal parameters 
do not exist. Many researchers performed trial and error approach to visually assess the 
quality of the results or used the parameters proposed by other researchers for different 
study areas, which may result in poor performance. It should be also noted, that low-pass 
Gaussian filter may remove the information about truly existing trees e.g. in case treetops 
are very close to each other, leading to omission errors (large filtering window or too 
many iterations). On the other hand, unfiltered noise (small window, single iteration) may 
lead to commission errors. It may seem that for agricultural trees tree identification is not  
a problem, because trees are usually planted within a distance. However, in old orchard, 
tree crowns often touch neighbouring crowns, and they are not subject of further pruning 
to ensure maximum yields. In this case, tree top identification becomes problematic, be-
cause crowns of agricultural trees have no conical shape like coniferous trees, but the top 
surface of crown is rather flat, spherical or irregular. Especially in the latter case, is may 
be difficult to distinguish trees and detect only one treetop for a single tree.
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Taking into consideration the above two paragraphs it can be concluded that the suc-
cessful tree identification is highly conditioned by forest stand characteristics (tree spe-
cies, forest age and density), while data density and processing strategy is of secondary 
importance. It is important to note that the success rates presented in Figures 3 and 4 refer 
to different study areas, so they cannot be compared directly.

Fig. 3. The efficiency of tree detection methods reported by researchers after year 2000 

Fig. 4. The dependence between ALS data density and efficiency of tree detection methods,  
as reported by researchers (research after year 2000 are considered)

Among the methods for crown delineation, 2D approaches are dominant. These me-
thods are based on CHM analysis, therefore they efficiency directly depend on CHM 
quality. The methods are sensitive to treetop identification. Only the classical watershed 
transformation can perform without initial definition of seed point, but the results are not 
as good as in marker-controlled watershed approach, that requires object marker defi-
nition. Moreover, in region growing approach some constraints are imposed on the tree 
crown outline. In particular, only “star shape” type objects (that represents well only 
regular shapes) are allowed. Therefore it may lead to incorrect delineation of tree crowns 
of irregular shapes e.g. broad crowns, vase crowns and layered crowns as well as crowns 
being subject of pruning. Watershed transformation and pouring methods were originally 
developed for relief analysis and were adopted for forestry studies, so the results obtained 
with these methods usually requires further processing e.g. iterative segmentation and 
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merging of defined outlines. It seems there are no contradictions to adopt forestry me-
thods of tree crown delineation for agricultural trees. It should be investigated how to set 
parameters of methods and which method performs the best.

It is still a challenging task to separate crown of overlaying trees, especially for de-
ciduous trees. The efficiency of methods decreases for small trees and with increasing 
forest density. For this reason several researchers suggested to move towards 3D analysis. 
These methods, however, require high density ALS data. A drawback of voxel space ap-
proach is that trees, that were not identified in the top layer, will not be identified at all or 
merged to other trees. Therefore, this method is not suitable for areas covered by trees of 
significantly varying heights. It is also sensitive to voxel dimensions. It is desired to de-
fine not uniform voxel space, but none of the research indicates the method of voxel space 
dimensions other than by trial and error approach. An alternative method for 3D crown 
delineation is k-means approach that is also not free of drawbacks. It tends to create ball 
shaped segments, so researchers apply downscaling factor for CHM heights to overcome 
this problem. However, the value of this factor is again tuned by trial and error approach. 
In agricultural studies only limited cases of overlaying trees are expected, so 3D approach 
is probably too complex for agricultural trees.

The strategies of tree geometric parameter estimation can be divided into two ap-
proaches: without and with reference data. In case no reference data is available, only 
straightforward measurements on ALS data classified for individual tree can be per-
formed. This may lead to the occurrence of systematic errors. Tree heights are usually 
be underestimated because of limited probability that the laser beam hits the treetop. For 
similar reasons crown base height will usually be overestimated or they can be mixed 
among overlaying trees. Finally, crown diameter and crown volumes will directly depend 
on the quality of delineation process in 2D and 3D respectively. If a reference data are 
available it is recommended to use linear regression model that transform explanatory 
variables (e.g. plot characteristics) to final estimates of tree geometric parameters. With 
number of field measurements and great number of features it is possible to apply random 
forest method, that runs efficiently even on large data sets. The main disadvantage of both 
regression model approach and random forest approach is that field measurements are 
required, that were performed at this particular study area. Created models cannot be con-
sidered as versatile, because each tree species and study area varies significantly. In gen-
eral, the methodology for tree geometric parameters estimation is very straightforward, so 
it should be easy to adopt this strategy for agricultural studies. It should be investigated if 
the quality of the results is sufficient for agricultural management and planning. In case of 
the approach with reference data, it should be investigated which and how many param-
eters should be measured in the field to build a reliable regression model. 

The presented methods for tree identification, crown delineation and geometric pa-
rameter estimation were originally developed for forest areas and usually better results 
are obtained for coniferous trees than deciduous trees. So far, only limited studies were 
performed for agricultural trees, which have, after all, different structure than forest trees 
– they have short stem with a biomass located mainly in the crown. Moreover, forest trees 
are usually close to each other, supressed, with overlapping crowns, while the agricultural 
trees are kept at a distance, due to artificial planting and regular pruning. Still, there is 
very few research related with the use of ALS data for agricultural areas. It seems that for 
agricultural trees the potential of ALS data is still unexplored and undervalued.
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PRZEGLĄD METOD ESTYMACJI PARAMETRÓW GEOMETRYCZNYCH 
DRZEW Z DANYCH ALS W KONTEKŚCIE ICH APLIKACJI  
DLA DRZEW UPRAWNYCH

Streszczenie. Celami pracy są przegląd oraz analiza istniejących metod estymacji param-
etrów geometrycznych drzew na podstawie danych lotniczego skaningu laserowego  
w kontekście ich aplikacji dla drzew uprawnych. W artykule przedstawiono szczegółowy 
opis metod estymacji tych parametrów stosowanych przez różne grupy badawcze. Opis 
uwzględnia budowę wysokościowego modelu koron, identyfikację drzew, identyfikację 
kształtu koron w 2D i 3D, estymację wysokości drzew, wysokości podstawy koron, średnic 
oraz objętości koron. Wskazano zalety i wady zaprezentowanych metod. Przeanalizowano 
także, czy opisane metody rozwinięte na obszarach leśnych mogą być wykorzystywane  
w przypadku drzew uprawnych. 

Słowa kluczowe: ALS, drzewa, rolnictwo, teledetekcja
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