PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency-multiplexed gas sensing using chirped laser molecular spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for frequency-multiplexed multi-sample gas sensing is presented. It enables measuring multiple samples placed simultaneously in the setup, without any optical or mechanical switching. Samples are measured using heterodyne detection and signal from each sensing path is encoded at different carrier frequency. Subsequently, a signal from particular sample is retrieved through heterodyne beatnote demodulation at unique frequency. This technique is particularly suitable for real-time calibration of the sensor through a sequential (or simultaneous) detection of three signals: from unknown sample, reference sample and baseline. Basic setup is demonstrated and proof-of-concept experiments are presented. Very good agreement with spectra measured using standard tunable diode absorption spectroscopy is obtained.
Twórcy
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Laser Sensing Laboratory, Wroclaw Research Centre EIT+, ul. Stabłowicka 147, 54-066 Wroclaw, Poland
autor
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Laser Sensing Laboratory, Wroclaw Research Centre EIT+, ul. Stabłowicka 147, 54-066 Wroclaw, Poland
Bibliografia
  • [1] A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, L. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, D. Lisak, Absolute molecular transitions frequencies measured by three cavity-enhanced spectroscopy techniques, J. Chem. Phys. 144 (2016) 214202–214211.
  • [2] J. Domysławska, S. Wójtewicz, P. Masłowski, A. Cygan, K. Bielska, R.S. Trawiński, R. Ciuryło, D. Lisak, A new approach to spectral line shapes of the weak oxygen transitions for atmospheric applications, J. Quant. Spectrosc. Radiat. Transfer 169 (2016) 111–121.
  • [3] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, B. Jänker, Near - and mid-infrared laser-optical sensors for gas analysis, Opt. Laser Eng. 37 (2002) 101–114.
  • [4] D.D. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors, Spectrochim. Acta A 60 (2004) 3325–3335.
  • [5] J. Nowak, P. Magryta, T. Stacewicz, W. Kumala, S. Malinowski, Fast optoelectronic sensor of water concentration, Opt. Appl. 46 (2016) 607–618.
  • [6] R. Maamary, X. Cui, E. Fertein, P. Augustin, M. Fourmentin, D. Dewaele, F. Cazier, L. Guinet, W. Chen, A quantum cascade laser-based optical sensor for continuous monitoring of environmental methane in Dunkirk (France), Sensors 16 (2016) 224–237.
  • [7] G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths, Optica 1 (2014) 290–298.
  • [8] G. Plant, M. Nikodem, P. Mulhall, R. Varner, D. Sonnenfroh, G. Wysocki, Field test of a remote multi-path CLaDS methane sensor, Sensors 15 (2015) 21315–21326.
  • [9] E. Kerstel, L. Gianfrani, Advances in laser-based isotope ratio measurements: selected applications, Appl. Phys. B-Lasers Opt. 92 (2008) 439–449.
  • [10] P. Sturm, B. Tuzson, S. Henne, L. Emmenegger, Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: analytical improvements and representative results, Atmos. Meas. Technol. 6 (2013) 1659–1671.
  • [11] W.E. Wang, A.P.M. Michel, L. Wang, T. Tsai, M.L. Baeck, J.A. Smith, G. Wysocki, A quantum cascade laser-based water vapor isotope analyzer for environmental monitoring, Rev. Sci. Instrum. 85 (2014) 093103.
  • [12] J. Wojtas, Application of cavity enhanced absorption spectroscopy to the detection of nitric oxide, carbonyl sulphide, and ethanebreath biomarkers of serious diseases, Sensors 15 (2015) 14356–14369.
  • [13] Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. Dweik, C. Kao, G. Wysocki, Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood, Sci. Rep. 5 (2015) 9096.
  • [14] T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, D. Szabra, Detection of disease markers in human breath with laser absorption spectroscopy, Opto-electron. Rev. 24 (2016) 82–94.
  • [15] L.M. Paardekooper, G. van den Bogaart, M. Matthijs Kox, I. Dingjan, A. Neerincx, M. Bendix, M. ter Beest, F.J.M. Harren, T. Risby, P. Pickkers, N. Marczin, S.M. Cristescu, Ethylene, an early marker of systemic inflammation in humans, Sci. Rep. 7 (2017) 6889.
  • [16] J. Wojtas, T. Stacewicz, Z. Bielecki, B. Rutecka, R. Medrzycki, J. Mikolajczyk, Towards optoelectronic detection of explosives, Opto-electron. Rev. 21 (2013) 210–219.
  • [17] M. Phillips, B. Brumfield, Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser, Opt. Eng. 57 (2017) 011003.
  • [18] M. Nikodem, K. Krzempek, D. Stachowiak, G. Wysocki, Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels, Opt. Eng. 57 (2017) 011019.
  • [19] P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, S. Lundqvist, Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-µm range, Appl. Phys. B-Lasers Opt. 105 (2011) 427–434.
  • [20] S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, J. Koeth, Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm, Appl. Opt. 51 (2012) 6009–6013.
  • [21] H. Moser, W. Pölz, J. Waclawek, J. Ofner, B. Lendl, Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream, Anal. Bioanal. Chem. 409 (2017) 729–739.
  • [22] K. Krzempek, G. Dudzik, A. Hudzikowski, A. Gluszek, K. Abramski, Highly-efficient fully-fiberized mid-infrared differential frequency generation source and its application to laser spectroscopy, Opto-electron. Rev. 25 (2017) 269–274.
  • [23] D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer, Appl. Phys. B-Lasers Opt. 75 (2002) 343–350.
  • [24] J.B. McManus, M.S. Zahniser, D.D. Nelson, J.H. Shorter, S. Herndon, E. Wood, R. Wehr, Application of quantum cascade lasers to high-precision atmospheric trace gas measurements, Opt. Eng. 49 (2010) 111124.
  • [25] A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Application of quantum cascade lasers to trace gas analysis, Appl. Phys. B-Lasers Opt. 90 (2008) 165–176.
  • [26] B. Tuzson, S. Henne, D. Brunner, M. Steinbacher, J. Mohn, B. Buchmann, L. Emmenegger, Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events, Atmos. Chem. Phys. 11 (2011) 1685–1696.
  • [27] G. Hancock, J.H. van Helden, R. Peverall, G.A.D. Ritchie, R.J. Walker, Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser, Appl. Phys. Lett. 94 (2009) 201110.
  • [28] C. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, G. Wysocki, Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring-laboratory and field test, Appl. Phys. B-Lasers Opt. 110 (2012) 1–8.
  • [29] J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, VCSEL-based calibration-free carbon monoxide sensor at 2.3 µm with in-line reference cell, Appl. Phys. B-Lasers Opt. 102 (2010) 381–389.
  • [30] K. Sun, L. Tao, D.J. Miller, M.A. Khan, M.A. Zondlo, Inline multi-harmonic calibration method for open-path atmospheric ammonia measurements, Appl. Phys. B-Lasers Opt. 110 (2012) 213–222.
  • [31] L. Tao, K. Sun, M.A. Khan, D. Miller, M. Zondlo, Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser, Opt. Express 20 (2012) 28106–28118.
  • [32] C.J. Smith, W. Wang, G. Wysocki, Real-time calibration of laser absorption spectrometer using spectral correlation performed with an in-line gas cell, Opt. Express 21 (2013) 22488–22503.
  • [33] H.L. Ho, W. Jin, H.B. Yu, K.C. Chan, C.C. Chan, M.S. Demokan, Experimental demonstration of a fiber-optic gas sensor network addressed by FMCW, IEEE Photonic. Technol. 12 (2000) 1546–1548.
  • [34] W. Jin, Performance analysis of a time-division-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feedback laser, Appl. Opt. 38 (1999) 5290–5297.
  • [35] H.B. Yu, W. Jin, H.L. Ho, K.C. Chan, C.C. Chan, M.S. Demokan, G. Stewart, B. Culshaw, Y.B. Liao, Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique, Appl. Opt. 40 (2001) 1011–1020.
  • [36] A. Plant, M.-F. Huang, T. Wang, G. Wysocki, Gas Sensing Fiber Network with Simultaneous Multi-node Detection using Range-resolved Chirped Laser Dispersion Spectroscopy, CLEO, 2015, San Jose, California, 2015, p. SM2O.1.
  • [37] M. Nikodem, G. Wysocki, Differential optical dispersion spectroscopy, IEEE J. Sel. Top. Quant. 23 (2017) 1–5.
  • [38] G. Wysocki, D. Weidmann, Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser, Opt. Express 18 (2010) 26123–26140.
  • [39] M. Nikodem, G. Wysocki, Measuring optically thick molecular samples using chirped laser dispersion spectroscopy, Opt. Lett. 38 (2013) 3834–3837.
Uwagi
1. This work was supported by the National Science Centre (Poland), grant number 2014/15/D/ST7/04898. M. N. acknowledges a scholarship for young scientists from Polish Ministry of Science and Higher Education.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2458761-f765-42ba-8f10-1a1a17530bc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.