PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current research trends in the process of using zeotropic mixtures in energy installations; Lorenz’s comparative cycle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Aktualne kierunki badań w procesie stosowania mieszanin zeotropowych w instalacjach energetycznych; Cykl porównawczy Lorenza
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to modern research directions and the development of the use of zeotropic mixtures in compact heat exchangers presents selected problems regarding the use of zeotropic mixtures in the implementation of refrigeration cycles in heat pumps. The phenomenon of temperature glide occurring in phase transitions has a significant impact on the selection of an appropriate reference circuit. For homogeneous refrigerants and for azeotropic mixtures, the reference cycle is the Carnot cycle with constant source temperature levels. In the case of zeotropic mixtures, due to temperature glide, there is a system with variable values of the temperature of the heat sources, for which the Lorenz cycle is an appropriate pattern. The method of calculating the coefficient of performance of a heat pump operating according to such a cycle and the criteria for assessing the approximation of the real cycle to the model cycle is given.
PL
W artykule omówiono współczesne kierunki badań i rozwój zastosowań mieszanin zeotropowych w kompaktowych wymiennikach ciepła. Przedstawiono wybrane zagadnienia dotyczące zastosowania mieszanin zeotropowych w realizacji obiegów chłodniczych w pompach ciepła. Zjawisko poślizgu temperaturowego występujące w przejściach fazowych ma istotny wpływ na dobór odpowiedniego obiegu porównawczego. W przypadku jednorodnych czynników chłodniczych i mieszanin azeotropowych cyklem referencyjnym jest cykl Carnota ze stałym poziomem temperatury źródła. W przypadku mieszanin zeotropowych, ze względu na poślizg temperaturowy, istnieje układ o zmiennych wartościach temperatury źródeł ciepła, dla którego właściwym wzorcem jest cykl Lorenza. W artykule podano sposób obliczania współczynnika wydajności pompy ciepła pracującej według takiego cyklu oraz kryteria oceny przybliżenia cyklu rzeczywistego do cyklu wzorcowego.
Czasopismo
Rocznik
Tom
Strony
17--25
Opis fizyczny
Bibliogr. 60 poz., rys., wzory
Twórcy
  • Koszalin University of Technology, Department of Mechanical Engineering
  • Koszalin University of Technology, Department of Mechanical Engineering
  • Koszalin University of Technology, Department of Mechanical Engineering
Bibliografia
  • [1] Kruzel M., Bohdal T., Dutkowski K., Kuczy W., Current Research Trends in the Process of Condensation of Cooling Zeotropic Mixtures in Compact Condensers, (2022).
  • [2] Schaefer L.A., Shelton S. V., Heat Exchanger Mean Temperature Differences for Refrigerant Mixtures, in: Advanced Energy Systems, American Society of Mechanical Engineers, 1998: pp. 383-389. https://doi.org/10.1115/IMECE1998-0865.
  • [3] Liu J., Zhou F., Lyu N., Fan H., Zhang X., Analysis of low GWP ternary zeotropic mixtures applied in high-temperature heat pump for waste heat recovery, Energy Convers Manag. 292 (2023) 117381. https://doi.org/10.1016/j.enconman.2023.117381.
  • [4] Ganesan P., Eikevik T.M., New zeotropic CO2-based refrigerant mixtures for cascade high-temperature heat pump to reach heat sink temperature up to 180°C, Energy Conversion and Management: X. 20 (2023). https://doi.org/10.1016/j.ecmx.2023.100407.
  • [5] Abedini H., Tomassetti S., Di Nicola G., Quoilin S., Arteconi A., Zeotropic Mixtures R1234ze(Z)/acetone and R1234ze(Z)/isohexane as Refrigerants in High Temperature Heat Pumps: influence of the accuracy in thermodynamic properties evaluations, International Journal of Refrigeration. (2023). https://doi.org/10.1016/j.ijrefrig.2023.05.008.
  • [6] Lorenz H., Die ermittelung der grenzwerte der termodynamischen energiewandlung. Zeitschrifte für die gesamte Kälte, Industrie 1895. 2 (1895) 1-12.
  • [7] Białko B., Termodynamiczne aspekty stosowalności mieszaniny węglowodorów nasyconych do realizacji obiegów lewobieżnych, Oficyna Wyd. Politechniki Wrocławskiej, 2019.
  • [8] Ochęduszko S., Termodynamika stosowana, 1964.
  • [9] Królicki Z., Białko B., Zajączkowski B., Termodynamiczne aspekty doboru obiegu porównawczego, Chłodnictwo & Klimatyzacja. 7 (2010) 16-20.
  • [10] Królicki Z., Denys M., Zeotropic propane-isobutane mixture in a low temperature heat pipe. Experimental research No Title, Refrigeration. 40 (2005) 10-15. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG4-0017-0076?q=bwmeta1.element.baztech-volume-0009-4919-chlodnictwo__organ_naczelnej_organizacji_technicznej-2005-r__40_nr_12;1&qt=CHILDREN-STATELESS.
  • [11] Xu R., Zhang C., Chen H., Wu Q., Wang R., Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures, Int J Heat Mass Transf. 137 (2019) 31-41. https://doi.org/10.1016/j.ijheat-masstransfer.2019.03.070.
  • [12] Jin D.X., Kwon J.T., Kim M.H., Prediction of in-tube condensation heat transfer characteristics of binary refrigerant mixtures, International Journal of Refrigeration. 26 (2003) 593-600. https://doi.org/10.1016/S0140-7007(02)00043-9.
  • [13] Azzolin M., Bortolin S., Condensation and flow boiling heat transfer of a HFO/HFC binary mixture inside a minichannel, International Journal of Thermal Sciences. 159 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106638.
  • [14] Webb D.R., Kim J.S., A Modification to the Equilibrium Model for Condensation of Vapours of Immiscible Liquids, Chemical Engineering Research and Design. 77 (1999) 110-116. https://doi.org/10.1205/026387699525981.
  • [15] Silver L., Gas cooling with aqueous condensation, Transactions of the Institute of Chemical Engineers. 25 (1947).
  • [16] Bell K., Ghaly M., An approximate generalized design method for multicomponent/ partial condensers, AIChE Symp. Ser. 69 (1973) 72-79.
  • [17] Stoecker W.F., McCarthy C.I., Simulation and performance of a system using an R-12/R-114 refrigerant mixture, (1978).
  • [18] Afroz H.M.M., Miyara A., Tsubaki K., Heat transfer coefficients and pressure drops during in-tube condensation of CO2/DME mixture refrigerant, International Journal of Refrigeration. 31 (2008) 1458-1466. https://doi.org/10.1016/j.ijrefrig.2008.02.009.
  • [19] Chisholm D., Sutherland L., Prediction of pressure gradients in pipeline systems during two-phase flow, in: Proceedings of the Institution of Mechanical Engineers, SAGE Publications, 1979.
  • [20] Agarwal R., Hrnjak P., Condensation in two phase and desuperheating zone for R1234ze(E), R134a and R32 in horizontal smooth tubes, International Journal of Refrigeration. 50 (2015).
  • [21] Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube, International Journal of Refrigeration. 24 (2001) 73-87. https://doi.org/10.1016/S0140-7007(00)00070-0.
  • [22] Coleman J.W., Garimella S., Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a, International Journal of Refrigeration. 26 (2003) 117-128. https://doi.org/10.1016/S0140-7007(02)00013-0.
  • [23] Shao D.W., Granryd E.G., Experimental and theoretical study on flow condensation with non-azeotropic refrigerant mixtures of R32/R134a, International Journal of Refrigeration. 21 (1998).
  • [24] Del Col D., Cavallini A., Thome J.R., Condensation of Zeotropic Mixtures in Horizontal Tubes: New Simplified Heat Transfer Model Based on Flow Regimes, J Heat Transfer. 127 (2005) 221-230. https://doi.org/10.1115/1.1857951.
  • [25] Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., Zilio C., Analysis and prediction of condensation heat transfer of the zeotropic mixture R-125/236ea, ASME Heat Transfer Division. (2000) 103-110.
  • [26] Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., Condensation of Halogenated Refrigerants Inside Smooth Tubes, HVAC&R Res. 8 (2002) 429-451. https://doi.org/10.1080/10789669.2002.10391299.
  • [27] Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L., A tube-in-tube water/zeotropic mixture condenser: design procedure against experimental data, Exp Therm Fluid Sci. 25 (2002) 495-501. https://doi.org/10.1016/S0894-1777(01)00107-8.
  • [28] Fronk B.M., Garimella S., Analysis of Coupled Heat and Mass Transfer During Condensation of High Temperature Glide Zeotropic Mixtures in Small Channels, in: Volume 8B: Heat Transfer and Thermal Engineering, American Society of Mechanical Engineers, 2013. https://doi.org/10.1115/IMECE2013-63273.
  • [29] Chang Y.S., Kim M.S., Ro S.T., Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system, International Journal of Refrigeration. 23 (2000) 232-242. https://doi.org/10.1016/S0140-7007(99)00042-0.
  • [30] Koyama S., Yu J., Ishibashi A., Condensation of binary refrigerant mixtures in a horizontal smooth tube, Thermal Science and Engineering. 6 (1998) 123-129.
  • [31] Tandon C.P., Varrna T.N., Gupta H.K., New flow regimes map for condensation inside horizontal tubes, Journal Heat Transfer. (1998.) 763-768.
  • [32] Milkie J.A., Condensation of Hydrocarbons and Zeotropic Hydrocarbon/Refrigerant Mixtures in Horizontal Tubes, Georgia Institute of Technology. (2014).
  • [33] Wen M.-Y., Ho C.-Y., Hsieh J.-M., Condensation heat transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the serpentine small-tube bank, Appl Therm Eng. 26 (2006) 2045-2053. https://doi.org/10.1016/j.applthermaleng.2005.10.001.
  • [34] Bohdal T., Charun H., Kruzel M., Sikora M., An investigation of heat transfer coefficient during refrigerants condensation in vertical pipe minichannels, in: E3S Web of Conferences, 2018. https://doi.org/10.1051/e3sconf/20187002001.
  • [35] Bohdal T., Charun H., Czapp M., Urządzenia chłodnicze sprężarkowe parowe. Podstawy teoretyczne i obliczenia, WNT, 2003.
  • [36] MIeczyński N.D., Druga zasada termodynamiki w analizie obiegów lewobieżnych, TChiK. (2005) 19-193.
  • [37] Nowak B., Zyczkowski P., The effect of temperature glide of R407C refrigerant on the power of evaporator in air refrigerators, Archives of Mining Sciences. 58 (2013) 1333-1346. https://doi.org/10.2478/amsc-2013-0092.
  • [38] Fronk B.M., Garimella S., Analysis of coupled heat and mass transfer during condensation of high temperature glide zeotropic mixtures in small channels, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 8 B (2013). https://doi.org/10.1115/IMECE2013-63273.
  • [39] Liu J., Zhou L., Lin Z., Zhang X., Performance evaluation of low GWP large glide temperature zeotropic mixtures applied in air source heat pump for DHW production, Energy Convers Manag. 274 (2022). https://doi.org/10.1016/j.enconman.2022.116457.
  • [40] Fronk B.M., Garimella S., Condensation of ammonia and high-temperature-glide zeotropic ammonia/water mixtures in minichannels - Part II: Heat transfer models, Int J Heat Mass Transf. 101 (2016) 1357-1373. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.048.
  • [41] Lorenz H., Beitrage zur Beurteilung von Kuhlmaschinen, Zeitschrift Vereins Deutscher Ingenieure. (1984) 62-68.
  • [42] Cao X., Zhang C.-L., Zhang Z.-Y., Stepped pressure cycle - A new approach to Lorenz cycle, International Journal of Refrigeration. 74 (2017) 283-294. https://doi.org/10.1016/j.ijrefrig.2016.10.017.
  • [43] Reinhold L., Kristoferson J., Zuhlsdorf B., Elmeegard B., O.T. Jensen J., Jorgesen P.H., Heat pump COP, Part 1: Generalized method for screening of system integration potentials, in: Proc. of the 13th IIR - Gustav Lorentzen Conference on Natural Refrigerants, 2018.
  • [44] Shatalov I.K., Antipov Yu.A., Dubentsov K.G., Use of the Lorenz Cycle in Heat Pumps, Chemical and Petroleum Engineering. 53 (2018) 716-719. https://doi.org/10.1007/s10556-018-0410-6.
  • [45] Jensen J., Ommen T., Reinholdt L., Markussen W.B., Elmegaard B., Heat pump COP, Part 2: Generalized COP estimation of heat pump processes, in: Proc. of the 13th IIR - Gustav Lorentzen Conference on Natural Refrigerants, 2018.
  • [46] Merc W., Chłodnictwo. Teoria chłodziarek, 1968.
  • [47] López Á.G., Benito F., Sabuco J., Delgado-Bonal A., The thermodynamic efficiency of the Lorenz system, Chaos Solitons Fractals. 172 (2023). https://doi.org/10.1016/j.chaos.2023.113521.
  • [48] Mittal A.K., Dwivedi S., Yadav R.S., Probability distribution for the number of cycles between successive regime transitions for the Lorenz model, Physica D. 233 (2007) 14-20. https://doi.org/10.1016/j.physd.2007.06.014.
  • [49] Kim S., Lee D., Jeon Y., Numerical analysis of heat transfer characteristics of a novel heat exchanger for Lorenz-Meutzner cycle with zeotropic mixtures, Int J Heat Mass Transf. 199 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123463.
  • [50] Yoon W.J., Seo K., Chung H.J., Lee E.J., Kim Y., Performance optimization of a Lorenz-Meutzner cycle charged with hydrocarbon mixtures for a domestic refrigerator-freezer, International Journal of Refrigeration. 35 (2012) 36-46. https://doi.org/10.1016/j.ijrefrig.2011.09.014.
  • [51] Guo J., He Y., Tao W., Sun Q., Exergy analysis of refrigeration heat pump system, Refrig. Air-Conditioning. 2 (2002) 17-22.
  • [52] Braimakis K., Karellas S.; Exergy efficiency potential of dual-phase expansion trilateral and partial evaporation ORC with zeotropic mixtures, Energy; Volume 262, Part B, 1 January 2023, 125475; https://doi.org/10.1016/j.energy.2022.125475;
  • [53] Bu S., Yang X., Li W., Su C., Dai W., Wang X., Liu X., Tang M.; Energy, exergy, exergoeconomic, economic, and environmental analyses and multiobjective optimization of a SCMR-ORC system with zeotropic mixtures; Energy; Volume 263, Part C, 15 January 2023, 125854; https://doi.org/10.1016/j.energy.2022.125854
  • [54] Sivakumar M., Somasundaram P.; Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development; Energy Conversion and Management; August 2014; https://doi.org/10.1016/j.enconman.2014.04.076;
  • [55] Al-Zahrani, A.; Energy and Exergy Analysis on Zeotropic Refrigerants R-455A and R-463A as Alternatives for R-744 in Automotive Air-Conditioning System (AACs). Processes 2023, 11, 2127. https://doi.org/10.3390/pr11072127
  • [56] Savitha, D., Ranjith, P., Talawar, B., Reddy, N.R.P. Refrigerants for sustainable environment - A literature review. Int. J. Sustain. Energy 2022, 41, 235-256. https://doi.org/10.1080/14786451.2021.1928129
  • [57] Abid Ustaoglu, Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach, Energy, 201, 2020, https://doi.org/10.1016/j.energy.2020.117491.
  • [57] Bonca Z., Dziubek R.; Computational issues in refrigeration and air conditioning, WSM Gdynia 1995.
  • [58] Horák P., Formánek M., Fecer T., Plášek J.; Evaporation of refrigerant R134a, R404A and R407C with low mass flux in smooth vertical tube; International Journal of Heat and Mass Transfer Volume 181, December 2021, 121845; https://doi.org/10.1016/j.ijheatmasstransfer.2021.121845.
  • [59] Havelsky V.; Investigation of refrigerating system with R12 refrigerant replacements; Applied Thermal Engineering 20 (2000); https://doi.org/10.1016/S1359-4311(99)00016-2
Uwagi
1. Błędna numeracja bibliografii.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e244412d-51ef-4711-b27f-60a1137f517c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.