PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of luminance distribution uniformity in CAVE-type virtual reality systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, many scientific and industrial centres in the world developed a virtual reality systems or laboratories. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system. In this paper, problems of luminance distribution uniformity in CAVE- type virtual reality systems are analyzed. For better characterization of CAVE luminance nonuniformity corner and edge CAVE nonuniformity were introduced. Based on described CAVE-type virtual reality laboratory, named Immersive 3D Visualization Lab (I3DVL) just opened at the Gdansk University of Technology, luminance nonuniformity of the system is evaluated and discussed. Data collection of luminance distribution allows for software compensation of intensity distribution of individual images projected onto the screen (luminance non-uniformity minimization) in the further research.
Rocznik
Strony
116--121
Opis fizyczny
Bibliogr. 26 poz., il., rys., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Metrology and Optoelectronics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] J. Lebiedź, A. Mazikowski, Launch of the immersive 3D visualization laboratory, Szybkobieżne Pojazdy Gąsienicowe (in High-Speed Tracked Vehicles) 34 (1) (2014) 49–56.
  • [2] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, The CAVE: A Virtual Reality Theater, 2, HPCCV Publications, 1992.
  • [3] K.J. Fernandes, V. Raja, J. Eyre, Cybersphere: the fully immersive spherical projection system, Comm. ACM 46 (9) (2003) 141–146.
  • [4] T.A. DeFanti, et al., The future of the CAVE, Cent. Eur. J. Eng. 1 (1) (2011) 16–37.
  • [5] T.A. DeFanti, G. Dave, D.J. Sandin, J.P. Schulze, P. Otto, J. Girado, F. Kuester, L. Smarr, R. Rao, The StarCAVE a third-generation CAVE and virtual reality OptIPortal, Fut. Gener. Comput. Syst. 25 (2009) 169–178.
  • [6] A. Mazikowski, J. Lebiedź, Image projection in immersive 3d visualization laboratory, 18th international conference on knowledge based and intelligent information & engineering systems KES, Procedia Comput. Sci. 35 (2014) 842–850.
  • [7] AixCave at RWTH Aachen University, http://www.itc.rwth-aachen.de, (Accessed 05, 2016).
  • [8] A. Mazikowski, M. Trojanowski, Measurement of spectral spatial distribution of scattering materials for rear projections screens used in virtual reality systems, Metrol. Measure. Syst. 20 (3) (2013) 443–452.
  • [9] D. Schroder, F. Wafers, S. Pelzer, D. Rausch, M. Vorlander, T. Kuhlen, Virtual Realiyty System at RWTH Aachen University, in: Proc. International Symposium on Room Acoustic, ISRA 2010 Melbourne, 2010.
  • [10] E. Medina, R. Fruland, S. Weghorst, Virtusphere–Walking in a Human Size VR Hamster Ball, Human factors and Ergonomics Society Annual Meeting New York 52 (27) (2008) 2102-2106.
  • [11] J. Gantenberg, K. Schill, C. Zetzsche, Exploring virtual worlds in a computerised hamster wheel, German Res. 34 (1) (2012) 24–27.
  • [12] J. Lebiedź, J. Łubiński, A. Mazikowski, Immersive 3D Visualization Laboratory Concept, in: 2nd International Conference on Information Technology, ICIT 2010, Gdańsk University of Technology Faculty of ETI Annals, the IT series, 18, Gdańsk, Poland, 2010, pp. 117–120.
  • [13] The most realistic virtual reality room in the world, Iowa State University News Service, 2018, http://www.public.iastate.edu/?nscentral/news/06/may/c6update.shtml, (Accessed 02, 2017).
  • [14] M. Gzik, P. Wodarski, J. Jurkojć, R. Michnik, A. Bieniek, Interactive systems of engineering support of upper limb diagnosis in Innovations in Biomedical Engineering, Springer, 115-123, 2016.
  • [15] Christie CAVE–Cave Automatic Virtual Environment, 2016, http://www. christiedigital.com, (Accessed 10, 2016).
  • [16] G. Burdea, P. Coiffet, Virtual Reality Technology, 2nd ed., Wiley, New York, 2003.
  • [17] H. Jorke, M. Fritz, Infitec–a new stereoscopic visualization tool by wavelength multiplex imaging, J. Three Dimension. Images 19 (3) (2005) 50–56.
  • [18] Barco Stereoscopic Projection. 3D Projection Technology, 2018, http://www. vr.barco.com, (Accessed 02, 2016).
  • [19] C. Hanel, B. Weyers, B. Hentschel, T. Kuhlen, Visual quality adjustment for volume rendering in head-tracked virtual environment, IEEE Trans Vis. Comput. Graph. 22 (4) (2016) 1472–1481.
  • [20] J. Lebiedź, A. Mazikowski, Innovative Solutions for Immersive 3D Visualization Laboratory, in: Proc. of WSCG2014 Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 2014, 2014, pp. 315–319.
  • [21] I.M. Hereld, Introduction to building projection based tiled display systems, IEEE Comput. Graphics Appl. 20 (2002) 22–28.
  • [22] A. Majumder, Z. He, H. Towles, G. Welch, Achieving Color Uniformity Across Multi-Projector Displays, Proc. IEEE Visualization Conference (2000) 117–124.
  • [23] ICDM. IDMS v1.03, (2012).
  • [24] H.P. Crowell III, J.A. Faughn, P.K. Tran, P.W. Wiley, Improvements in the Omni-Directional Treadmill: Summary report and Recommendations for Future Development, Army Research Laboratory, 2006, ARL-TR-3958.
  • [25] A. De Luca, R. Mattone, P.R. Giordano, The Motion Control Problem for the CyberCarpet, in: Proc. of the 2006 IEEE International Conf. on Robotics and Automation, Orlando, 2006.
  • [26] www.integraav.pl/en, (Accessed 01, 2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2439dce-f049-492a-837d-98790923107c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.