PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Oxygen Reduction Activity of Nitrogen-doped Graphene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphite nitrogen, pyridine nitrogen and pyrrole nitrogen are the main nitrogen types in nitrogen-doped graphene materials. In order to investigate the mechanism of the oxygen reduction activity of nitrogen-doped graphene, several models of nitrogen-doped graphene with different nitrogen contents and different nitrogen types are developed. The nitrogen content is varied from 1.3 at% to 7.8 at%, and the adsorption energy is calculated according to the established models, then the band gaps are analyzed through the optimization results, so as to compare the mag-nitude of the conductivity. Finally, the oxygen reduction activity of graphite nitrogen-doped graphene (GNG) is found to be better than pyridine nitrogen-doped graphene (PDNG) and pyrrole nitrogen-doped graphene (PLNG) when the nitrogen content is lower than 2.6 at%, and the oxygen reduction activity of PDNG is the best when the nitrogen content was higher than 2.6 at%.
Rocznik
Strony
29--34
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
autor
  • College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090
Bibliografia
  • 1. Ren, X., Wang, B., Zhu, J., Liu, J., Zhang, W. & Wen, Z. (2015). The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study. Phys. Chem. Chem. Phys. 17 (22), 14605–14612. DOI: 10.1039/C5CP00869G.
  • 2. Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S. & Knights, S. (2011). High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4 (3), 760–764. DOI: 10.1039/C0EE00326C.
  • 3. Pimonova, Y.A., Budnyk, A.P., Yohannes, W., Bugaev, A.L. & Lastovina, T.A. (2019). Iron-/nitrogen-doped electro-catalytically active carbons for the oxygen reduction reaction with low amounts of cobalt. ACS omega 4 (22), 19548–19555. DOI: 10.1021/acsomega.9b01534.
  • 4. Li, L., Dai, P., Gu, X., Wang, Y., Yan, L. & Zhao, X. (2017). High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A. 5 (2), 789–795. DOI: 10.1039/C6TA08016B.
  • 5. Wang, J., Li, L. & Wei, Z.D. (2016). Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-doped Graphene. Acta Phys.-Chim. Sin. 32 (1), 321–328. DOI: 10.3866/PKU.WHXB201512091.
  • 6. Bertóti, I., Mohai, M. & László, K. (2015). Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon. 84, 185–196. DOI: 10.1016/j.carbon.2014.11.056.
  • 7. Jia, R., Chen, J., Zhao, J., Zheng, J., Song, C., Li, L. & Zhu, Z. (2010). Synthesis of highly nitrogen-doped hollow carbon nanoparticles and their excellent electrocatalytic properties in dye-sensitized solar cells. J. Mater. Chem. 20 (48), 10829–10834. DOI: 10.1039/C0JM01799J.
  • 6. Buan, M.E., Muthuswamy, N., Walmsley, J.C., Chen, D. & Rønning, M. (2016). Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts. Carbon. 101,191–202. DOI: 10.1016/j.carbon.2016.01.081.
  • 7. Cao, Y., Si, W., Zhang, Y., Hao, Q., Lei, W., Xia, X., Li, J. & Wang, F. (2018). Nitrogen-doped graphene: effect of graphitic-N on the electrochemical sensing properties towards acetaminophen. Flat. Chem. 9, 1–7. DOI: 10.1016/j.flatc.2018.03.002.
  • 8. Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T. & Nakamura, J. (2016). Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351 (6271), 361–365. DOI: 10.1126/science.aad0832.
  • 9. Weththasinha, H.A.B.M.D., Yan, Z., Gao, L., Li, Y., Pan, D., Zhang, M., Lv, X., Wei, W. & Xie, J. (2017). Nitrogen doped lotus stem carbon as electrocatalyst comparable to Pt/C for oxygen reduction reaction in alkaline media. Int. J. Hydrog. Energy. 42 (32), 20560–20567. DOI: 10.1016/j.ijhydene.2017.06.011.
  • 10. Haile, A.S., Hansen, H.A., Yohannes, W. & Mekonnen, Y.S. (2021). Pyridinic-Type N-doped graphene on cobalt substrate as efficient electrocatalyst for oxygen reduction reaction in acidic solution in fuel cell. J. Phys. Chem. Lett. 12 (14), 3552–3559. DOI: 10.1021/acs.jpclett.1c00198.
  • 11. Sanchez-Padilla, N.M., Benavides, R., Gallardo, C., Fernandez, S., De-Casas, E. & Morales-Acosta, D. (2021). Influence of doping level on the electrocatalytic properties for oxygen reduction reaction of N-doped reduced graphene oxide. Int. J. Hydrog. Energy. 46, 26040–26052. DOI: 10.1016/j.ijhydene.2021.03.023.
  • 12. Zhao, Q., Wang, J. & Xiong, Z. (2016). The Application of Materials Studio in the Teaching of Crystal Structure in Solid State Physics. In Computer Science and Engineering Technology (CSET2015) & Medical Science and Biological Engineering (MSBE2015), (pp. 489-494).10.1142/9789814651011_0070.
  • 13. Feng, L., Cao, D., Wang, J., Chen, L., Chen, F., Zhang, N. & Liu, P. (2015). Prediction of crystal morphology of MTNI. Chin. J. Energ. Mater. 23 (5), 443–449. DOI: 10.11943/j.issn.1006-9941.2015.05.008.
  • 14. Lobzenko, I., Dmitriev, S.V., Baimova, J. & Dzhelauhova, G. (2016). Numerical Studies of Discrete Quasibreathers in Graphene in the Framework of Density Functional Theory. Mater. Sci. Forum 845, 215–218. DOI: 10.4028/www.scientific.net/MSF.845.215.
  • 15. Karami, A.R. (2015). Density functional theory study of acrolein adsorption on graphyne. Can. J. Chem. 93(11), 1261-1265. DOI: 10.1139/cjc-2015-0267.
  • 16. Wu, H. & Sit, P. H. L. (2021). Ab initio study of graphitic-N and pyridinic-N doped graphene for catalytic oxygen reduction reactions. Comput. Theor. Chem. 1201, 113292. DOI: 10.1016/j.comptc.2021.113292.
  • 17. Zhang, J., Wang, Z. & Zhu, Z. (2013). A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene. J. Mol. Model. 19, 5515–5521. DOI: 10.1007/s00894-013-2047-x.
  • 18. Tao, Y., Liu, C., Yang, J., Bi, K., Chen, W. & Chen, Y. (2016). First Principles Study of Thermal Conductance Across Cu/Graphene/Cu Nanocomposition and the Effect of Hydrogenation. In International Conference on Micro/Nanoscale Heat Transfer, 4–6 January 2016 (pp. 7). Biopolis, Singapore, American Society of Mechanical Engineers.10.1115/MNHMT2016-6318
Uwagi
Błędna numeracja bibliografii: nr 6 i 7 występują dwukrotnie (inne opisy bibliograficzne).
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e240f067-5126-4c84-ba86-f1ecc2711094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.