PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MHD free convection-radiation interaction in a porous medium - part I: numerical investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical investigation of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium is presented by taking into account the Soret/Dufour effects. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. We use simple central difference derivatives and averages at the mid points of net rectangles to get finite difference equations with a second order truncation error. We have conducted a grid sensitivity and time calculation of the solution execution. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. The Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. A comparative study between the previously published and present results in a limiting sense is found in an excellent agreement.
Rocznik
Strony
198--218
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad - 211004, INDIA
  • Department of Mechanical Engineering, Cleveland State University Ohio, 44115, USA
  • Department of Mathematics, Indian Institute of Technology Kharagpur - 721 302, INDIA
autor
  • Department of Mathematics, Vellore Institute of Technology, Vellore- 632014, INDIA
  • Department of Mechanical and Aeronautical Engineering, School of Science, Engineering and Environment (SEE), Newton building, Salford University, Manchester, M54WT, UK
autor
  • Department of Mathematics COMSATS Institute of Information Technology Attock, PAKISTAN
Bibliografia
  • [1] Keller H.B. (1970): A new difference method for parabolic problems. − J. Bramble (Editor), Numerical Methods for Partial Differential Equations.
  • [2] Chiam T.C. (1993): The flat plate magnetohydrodynamic boundary layer flow with a step change in the magnetic field. − J. Phys. Soc. Japan., vol.62, pp.2516-2517.
  • [3] Rees D.A.S. and Pop I. (1995): Boundary layer flow and heat transfer on a continuous moving wavy surface. − Acta Mechanica. vol.112, pp.149-158.
  • [4] Hossain M.A., Das S.K. and Pop I. (1996): MHD free convection flow near rotating axisymmetric round-nosed bodies. − Magnetohydrodynamics, vol.32, pp.63-67.
  • [5] Rees D.A.S. and Hossain M.A. (1999): Combined effect of inertia and a spanwise pressure gradient on free convection from a vertical surface in porous media. − Numerical Heat Transfer, Part A: Applications, vol.36, pp.725-736.
  • [6] Bég O.A., Takhar H.S., Nath G. and Kumari M. (2001): Computational fluid dynamics modeling of buoyancyinduced viscoelastic flow in a porous medium. − Int. J. Applied Mechanics and Engineering, vol.6, pp.187-210.
  • [7] Bég O.A., Chamkha A.J. and Takhar H.S. (2004): Radiative free convective non-Newtonian fluid flow past a wedge embedded in a porous medium. − Int. J. Fluid Mechanics Research, vol.31, pp.101-115.
  • [8] Ishak A., Nazar R. and Pop I. (2008): Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. − Energy Conversion and Management, vol.49, pp.3265-3269.
  • [9] Damseh R.A., Tahat M.S. and Benim A.C. (2009): Nonsimilar solutions of magnetohydrodynamic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature. − Progress in Computational Fluid Dynamics: An International Journal, vol.9, pp.58-65.
  • [10] Bég O.A., Ramachandra Prasad V., Vasu B., Bhaskar Reddy N., Li Q. and Bhargava R. (2011): Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects.− International Journal of Heat and Mass Transfer, vol.54, No.1-3, pp.9-18.
  • [11] Prasad V.R., Vasu B., Bég O.A. and Prashad R.D. (2012): Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime. − Communications in Nonlinear Science and Numerical Simulations, vol.17, No.2, pp.654-671.
  • [12] Gorla R.S.R. and Vasu B. (2016): Unsteady convective heat transfer to a stretching surface in a non-Newtonian nanofluid. − Journal of Nanofluids, vol.5, No.4, pp.581-594.
  • [13] Gorla R.S.R., Vasu B. and Siddiqa S. (2016): Transient combined convective heat transfer overstretching surface in a non-Newtonian nanofluid using Buongiorno's model. − Journal of Applied Mathematics and Physics (JAMP), vol.4, No.2, pp.443-460.
  • [14] Roblee L.H.S., Baird R.M. and Tiernery J.W. (1958): Radial porosity variation in packed beds. − AIChem E J., vol.8, pp.359-61.
  • [15] Vafai K. (1984): Convective flow and heat transfer in variable-porosity media. − J. Fluid Mechanics, vol.147, pp.233-259.
  • [16] Zueco J., Bég O.A. and Takhar H.S. (2009): Network numerical analysis of magneto-micropolar convection through a vertical circular non-Darcian porous medium conduit. − Computational Materials Science, vol.46, pp.1028-1037.
  • [17] Minkowycz W.J. and Cheng P. (1976): Free convection about a vertical cylinder embedded in a porous medium. − Int. J. Heat Mass Transfer, vol.19, pp.508-513.
  • [18] Hamzeh Alkasasbeh T., Mohd Zuki Salleh, Roslinda Nazar and Pop I. (2014): Numerical solutions of radiation effect on magnetohydrodynamic free convection boundary layer flow about a solid sphere with Newtonian heating. − Applied Mathematical Sciences, vol.8, No.140, pp.6989-7000.
  • [19] Kumari M. and Gorla R.S.R. (2015): MHD boundary layer flow of a non-Newtonian nanofluid past a wedge. − Journal of Nanofluids, vol.4, No.1, pp.73-81(9).
  • [20] Peri K. Kameswaran, Vasu B., Murthy P.V.S.N. and Gorla R.S.R. (2016): Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq approximation. − International Communications in Heat and Mass Transfer, vol.77, pp.78-86.
  • [21] Beg O.A., Prasad V.R.., Vasu B. and Gorla R.S.R. (2017): Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media. − Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.39, No.6, pp.2035-2054.
  • [22] Vasu B., Ram Reddy Ch., Murthy P.V.S.N. and Gorla R.S.R. (2017): Entropy generation analysis in nonlinear convection flow of thermally stratified fluid in saturated porous medium with convective boundary condition. − ASME-Journal of Heat Transfer, vol.139, No.9, 091701-1 (10 pages).
  • [23] Bég O.A., Tasveer A. Bég, Bakier A.Y. and Prasad V. (2009): Chemically-reacting mixed convective heat and mass transfer along inclined and vertical plates with Soret and Dufour effects: Numerical solutions. − Int. J. Applied Mathematics and Mechanics, vol.5, No.2, pp.39-57.
  • [24] Bhargava R., Sharma R. and Bég O.A. (2009): Oscillatory chemically-reacting MHD free convection heat and mass transfer in a porous medium with Soretand Dufour effects: finite element modeling. − Int. J. Applied Mathematics and Mechanics, vol.5, No.6, pp.15-37.
  • [25] El-Kabeir S.M.M and Chamkha Ali J. (2013): Heat and mass transfer by mixed convection from a vertical slender cylinder with chemical reaction and Soret and Dufour effects. − Heat Transfer-Asian Research, vol.42, No.7, pp.618–629.
  • [26] Bhattacharyya K., Layek G.C. and Seth G.S. (2014): Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface. − Phys. Scr., vol.89, No.9, 095203.
  • [27] Yih K.A. (2000): Effect of uniform blowing/suction on MHD-natural convection over a horizontal cylinder: UWT or UHF. − Acta Mechanica, vol.44, pp.17-27.
  • [28] Plumb O.A. and Huenefeld T.C. (1981): Non-Darcy natural convection form heated surfaces in porous media. − Int. J. Heat Mass Transfer., vol.24, pp.765-768.
  • [29] Raptis P. and Perdikis C. (2004): Unsteady flow through a highly porous medium in the presence of radiation. − Transport Porous Medium J., vol.57, No.2, pp.171-179.
  • [30] Cebeci T. and Bradshaw P. (1984): Physical and Computational Aspects of Convective Heat Transfer. − New York: Springer.
  • [31] Vasu B., Prasad V.R. and Bég O.A. (2012): Thermo-diffusion and diffusion-thermo effects on MHD free convective heat and mass transfer from a sphere embedded in a non-Darcian porous medium. − Journal of Thermodynamics, vol.2012, Article ID 725142, 17 pages.
  • [32] Merkin J.H. (1977): Free convection boundary layers on cylinders of elliptic cross section. − J. Heat Transfer, vol.99, pp.453-457.
  • [33] Gebhart B. and Pera L. (1971): The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. − Int. J. Heat and Mass Transfer, vol.14, pp.2025-2040.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e23fb406-556e-44de-8ad8-fa679b447cc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.