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Abstract

In many Reinforcement Learning (RL) tasks, the classical online interaction of the learn-
ing agent with the environment is impractical, either because such interaction is expensive
or dangerous. In these cases, previous gathered data can be used, arising what is typically
called Offline RL. However, this type of learning faces a large number of challenges,
mostly derived from the fact that exploration/exploitation trade-off is overshadowed. In
addition, the historical data is usually biased by the way it was obtained, typically, a
sub-optimal controller, producing a distributional shift from historical data and the one
required to learn the optimal policy. In this paper, we present a novel approach to deal
with the uncertainty risen by the absence or sparse presence of some state-action pairs in
the learning data. Our approach is based on shaping the reward perceived from the envi-
ronment to ensure the task is solved. We present the approach and show that combining
it with classic online RL methods make them perform as good as state of the art Offline
RL algorithms such as CQL and BCQ. Finally, we show that using our method on top of
established offline learning algorithms can improve them.
Keywords: Off-line Reinforcement Learning, uncertainty quantification, Machine Learn-
ing

1 Introduction

Classical Reinforcement Learning (RL)
tasks are solved by an online interaction between
the learning agent and the environment. Some-
times, this is unfeasible, either because such inter-
action is very expensive or because it may produce
catastrophic effects in the agent or its environment.

In addition, even when an online interaction is fea-
sible, we might prefer to use previously collected
data, for example, to obtain a sub-optimal policy
that can be used in a later fine-tuning process, min-
imizing the amount of new data required. This way
of learning from a batch of experiences without ex-
ploration has been referred to as Batch RL, Offline
RL, or data-driven RL [1, 2, 3].
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Some of the most common methods within RL
can learn from off-policy data, following an expe-
rience replay approach. However, methods that ap-
ply experience replay do not make it fully effective
from offline data without adding some online inter-
action due to several factors. The main problem is
that the classical exploration-exploitation trade-off
that makes efficient and effective to most RL algo-
rithms is, in Offline RL, broken due to some new
challenges. A fundamental one is related to the
distributional shift, also called out-of-distribution
states and actions [4, 5, 1]. Distributional shift is
typically defined as the difference between the dis-
tribution of the data on which our function approx-
imator (policy, value function or model) has been
trained and the distribution in which it will be eval-
uated. This is due both to the change in the states
visited by the learned policy, and to the act of max-
imising the expected return.

In Offline RL, as well as in the scope of explo-
ration and exploitation trade-off, distributional shift
appears by the difference between the available data
for learning the policy and the data required to learn
the optimal policy. Basically, if some experiences
are required to learn the optimal policy, but such
experiences are never visited, there is no way to
learn the optimal policy. Sometimes, even some
state-actions pairs are visited, they are not done in
an amount enough so the model acquired from it is
accurate. The importance of this point grows with
the stochasticity of the environment and its reward
and/or state transition function. The more lack of
data to learn the model, the more uncertainty about
the model correctness.

In this paper, we present a simple but effective
approach to quantify the uncertainty that a dataset
will generate based on how frequent the visited
states are. This information is used to conserva-
tively reshape the reward signal of the environment,
therefore propagating it to the value function esti-
mation. Therefore, state-actions pair that have been
visited in low proportion to other states, should con-
tribute also less to the computation of the optimal
policy, or even be avoided since its outcome is quite
uncertain.

As an example, Figure 1 shows two different
data distributions of the Cartpole domain1. The first

distribution, Figure 1a, is an exploration performed
during training with offline data. The second one,
Figure 1b, is a random exploration performed in the
environment of the Cartpole domain. As seen in
these images, the distribution corresponding to the
exploration in the environment is wider than the dis-
tribution of the offline dataset, in other words, there
are regions that are less known or even completely
missing by the offline dataset. If an agent learns a
policy using the offline dataset, the agent will be-
have blindly in all such unknown areas.

The main idea proposed in this paper is to
weight the original reward with a measure of the
uncertainty of that region of the space. The metric
is based on the clustering of the visited state space.
We use a well known bias of the k-means algorithm,
which locates centroids or prototypes in all and only
the known instance space, but in an unbalance way:
it may locate only a few instances in one Voronoi
region, and many in others, focusing only in the av-
erage distortion metric. Therefore, our measure is
based on the number of instances that are located in
the visited region or cluster, so the higher the num-
ber of instances, the better known is be transition
function for such region. In case a region is well
known the original reward is used as it is received
from the environment. In the opposite case, if the
number of instances is low, we understand that the
region is less-known and the original reward is re-
duced proportionally. This measure also can be un-
derstood as an exploration quality indicator. The
number of instances in less-known regions will be
low, and this indicates that we are dealing with a
poor exploration or that we would need additional
exploration to ensure a correct learning of the value
function.

The paper is organized as follows. Section 2
reviews the related background, with a brief intro-
duction to Offline RL, distributional shift and un-
certainty quantification. Section 3 present a brief
review of previous and related works on Offline
RL. Then, in Section 4, the new approach to deal
with distributional shift of the dataset through the
reshaping of the reward function is presented. After
this, an extensive evaluation is reported in Section
5. The experiments shows the results obtained by
introducing this reward reshaping with different al-

1This four-dimensional environment is represented by the x position of the cart, its velocity, the angle of the pole with respect
to the cart and its pole angular velocity.



275José Luis Pérez, Javier Corrochano, Javier Garcı́a, Rubén Majadas, Cristina Ibañez-Llan, Sergio Pérez, Fernando Fernández
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1This four-dimensional environment is represented by the x position of the cart, its velocity, the angle of the pole with respect
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Figure 1. Exploration comparison. The colour of the points represents the value of the fourth dimension of
the state (pole angular velocity). Offline data is clearly biased to some areas that could prevent the correct

learning of the optimal policy.

gorithms in three different domains from the D4RL
[6] benchmark datasets. Last, Section 6 describes
the main conclusions and future research.

2 Background

In this section, some concepts of RL, its Of-
fline version and uncertainty quantification are re-
viewed.

2.1 Reinforcement Learning

The RL problem is formalized by a Markov
Decision Process (MDP), which is represented by
M = { S ,A, R, P, ρ0, γ }, where S is the state space,
A is the action space, R : A x S → R is the reward
function, P : S x A x S’ → [0,1] is the transition
function which returns the probability to reach state
s’ from state s when action a is performed, ρ0 is the
initial state distribution, and γ is the discount factor.
The goal is to obtain an optimal policy π, which
maximizes expected return according to the next
formula, which estimates the discounted reward to
be received:

J(π) =
K

∑
k=0

γkrk (1)

Classic reinforcement learning is well-known
for its online nature, agent’s policy is learned via
trial-and-error interaction with the environment.
Much progress has been made in this area, in par-
ticular in the field known as Deep RL. Solutions
such as Deep Q Networks (DQN) [7] or Actor Critic

methods [8] have become a reference.

Exploitation vs. exploration problem is essen-
tial in classic reinforcement learning, where finding
a trade-off between following greedy steps given
by current policy (exploit) and including a ran-
dom behaviour that allows reaching unknown re-
gions of the state space (explore) is indispensable
to achieve optimal policies. Traditionally, this issue
has been addressed through different strategies, like
ε-greedy, that allow the above-mentioned balance
to be maintained.

Some techniques have incorporated batch fash-
ion approaches, which is known as experience re-
play. Instead of learning iteratively and update the
Q-values every time step, the agent holds a memory
or buffer of the last N experience tuples to be taken
into account in the future. As a summary, the basic
idea behind experience replay is to store past ex-
periences and then use these experiences to update
the Q-values, rather than using just the single most
recent experience. However, methods that apply ex-
perience replay do not make it fully effective from
offline data without adding some online interaction
due to the distributional shift, as will be discussed
below.

2.2 Offline Reinforcement Learning

In the Offline RL setting, any interaction
with the environment is unfeasible. Instead, a
fixed dataset of transitions is available which is for-
malised as D = {(si,ai,ri,s′i)}N

i=1. Experience tu-

(a) States visited in the data available for Offline RL (b) States visited following a ransom exploration strategy
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ples are assumed to be collected by a logging (be-
havioral) policy πβ which might not be optimal.

The Offline approach seeks improvements be-
yond imitation learning naive techniques. Be-
havioural Cloning (BC) replicates logging policy πβ
by learning from batch experience in a supervised
manner. Offline RL tries to achieve a good gener-
alization and improve knowledge transfer without
being constrained by the data.

Experience tuples dataset may not contain some
high reward regions, which are essential for opti-
mal learning. One of the main problems in Offline
Reinforcement Learning relies on the constraint of
learning through data, without any interaction with
the environment. Hence, learning is restricted to
the exploitation of available data. The difference
between logging policy πβ and optimal policy π∗

which could visit unknown or out-of-distribution
states is one of the open problems in this research
field called distributional shift, as will be discussed
below.

This paradigm would allow us to apply RL
to domains where it is currently infeasible or im-
practical to collect data online, such as healthcare
(e.g.,medical diagnosis), robotics (e.g., robotics
manipulation), inventory management, and au-
tonomous driving [3, 1]. Existing works and
projects which solve distributional shift and imple-
ments reinforcement learning in an offline manner
will be reviewed in Section 3.

2.3 Distributional Shift

A Machine Learning model employs training
data to learn the underlying distribution of that
dataset with the goal of getting accurate predictions
for unseen data. When the model is able to gen-
erate accurate predictions for unseen data and per-
forms well, it is said that model generalizes. These
concepts are addressed in the supervised learning
scope. However, the assumption that unseen data
comes from the same distribution as training data
is erroneous, the model might not generalize well.
Distributional or Data Distribution Shift is the name
of that common Machine Learning issue [9].

In the Offline Reinforcement Learning ap-
proach, a function approximator (e.g. policy, value
function, or model) might be trained under one dis-
tribution and evaluated on a different distribution,

due both to the change in visited states for the new
policy and, more subtly, by the act of maximizing
the expected return [1].

Distributional shift issues can be addressed in
several ways and can be classified into three groups.
The first one, policy constraint, mitigates distribu-
tional shift by constraining the learned policy to be
close to the behaviour policy [1]. Uncertainty based
solutions attempt to estimate the epistemic uncer-
tainty of Q values, and then use this to detect dis-
tributional shift [1]. Lastly, regularization methods
are used when we want to impose behaviors on our
learned policy that do not depend on behaviour pol-
icy. Regularization is a powerful tool that allows
us to tune our learned function by adding a penalty
term. [3].

2.4 Uncertainty Quantification

Our approach is based on estimating the un-
certainty of the state space in an unsupervised man-
ner, thus some concepts about uncertainty quantifi-
cation are reviewed in the following lines.

Sources of uncertainty arise when the test and
training data are mismatched, while data uncer-
tainty occurs because of class overlap or due to the
presence of noise in the data, however, estimating
knowledge uncertainty is significantly more diffi-
cult than estimating data uncertainty [10]. Potential
causes of uncertainty are noise in observations or an
incomplete coverage of the domain.

There are two main types of uncertainty. The
irreducible uncertainty in data that gives rise to un-
certainty in predictions is aleatoric uncertainty (also
known as data uncertainty). This type of uncer-
tainty is not a property of the model, but rather is
an inherent property of the data distribution, and
hence, it is irreducible [10]. The second one is epis-
temic uncertainty, which arises when the model has
incomplete knowledge. The main reason of that
type of uncertainty is the lack and poor quality of
training data. Offline RL methods based on uncer-
tainty quantification try to measure it.

Numerous techniques are being developed in
uncertainty quantification research field. Some of
them include bayesian approaches [10], model en-
semble approach (common in model based Offline
RL)[10, 11, 5] and unsupervised learning methods
[12] such as the one presented in this article.
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3 Related Work on Offline RL

Offline RL is an emerging field that has gained
momentum over the past few years. Most of its
works try to deal with the problem of distributional
shift using different techniques. In the literature,
there exist model-free and model-based methods as
in online RL. We give a brief overview of them
alongside their online counterpart, discussing their
most prominent algorithms and their relation with
policy constraint and uncertainty-based methods.

3.1 Online RL

Although online algorithms are not specifically
designed for offline applications, they have been
used in the past. Off-policy online reinforcement
learning algorithms allow learning from fixed col-
lections of data. However, those techniques failed
when training data is uncorrelated to the distribu-
tion under the current policy [13]. This problem
was reviewed in the previous section.

A widely adopted solution in continuous con-
trol tasks in an online manner is Soft Actor-Critic
(SAC) [14]. SAC is a model-free and off-policy
RL model that maximizes both the expected re-
ward and entropy. Our approach, DUQ, provides a
simple and effective way of quantifying uncertainty
for adapting SAC and other online off-policy algo-
rithms to offline scenarios, as will be shown below.

3.2 Model-free Offline RL

Fujimoto et al. [13] presented the first
continuous control Deep RL algorithm, Batch-
Constrained Deep Q-learning (BCQ), which can
learn effectively from a fixed batch of data. They
introduced a novel class of off-policy algorithms,
which restricts the actions space in order to force
the agent to behave close to the policy with re-
spect to a subset of the given data. BEAR [15] and
BRAC [16] follow the ideas introduced by BCQ, ar-
guing policy constraint methods. Kumar et al. BCQ
has been used in practical cases, as energy man-
agement optimization for connected hybrid electric
vehicle[17]. The Conservative Q-learning (CQL)
algorithm is capable of learning from a fixed dataset
and without further interaction[18]. It aims to ad-
dress the limitations caused by the distributional
shift by learning a conservative Q-function such
that the expected value of a policy under this Q-

function lower-bounds its true value. This paper
provides an easy-to-use mechanism to further re-
duce out-of-distribution states and actions problems
in these solutions with little modification. Related
with uncertainty quantification, Agarwal et. al.
[19] presented REM, an ensemble of K Q-functions
trained by disjoints subsets of the dataset [3].

Model-free algorithms are computationally
more efficient than model-based solutions because
they do not need to generate a model and sample
long rollouts over it. However, they offer lower re-
turns by exploiting data, as noted by the Siemens
Technology Team in their research [20].

3.3 Model-based Offline RL

Model-Based Policy Optimization (MBPO)
[21] is a model-based RL algorithm that, if it
is properly tuned, it can yield better results than
model-free approaches in the offline setting. This
method utilizes a predictive model of the transi-
tion distribution from the dataset. It updates the
policy using data sampled both from the dataset
and model. Other state-of-the-art works propose
conservative model-based RL algorithms, such as
Model-Based Offline RL (MOReL) [11], Model-
based Offline Policy Optimization (MOPO) [5]
and Conservative Offline Model-Based Policy Op-
timization (COMBO) [22].

They use conservative value estimates by mod-
ifying the MDP model learned from data to induce
conservative behaviours. Their main idea is to give
the policy a penalty for visiting states in which the
trained model is highly unlikely to perform well.
Both MOReL and MOPO learn an ensemble of N
dynamics models with each model trained indepen-
dently via maximum likelihood. With this ensem-
ble, MOReL and MOPO quantify the uncertainty
by defining an error measure, which changes for
each selected state-action pair. On the one hand,
MOPO utilizes this measure as a soft penalty in
the reward function. On the other hand, MOReL
constructs the MDP with terminal states based on
a threshold of this measure. Finally, COMBO
extends CQL [18] into the model-based setting.
COMBO overcomes uncertainty quantification step
of the previous methods which can be unreliable.
It is similar to MOPO, although it penalizes the
Q-values directly instead of through the reinforce-
ment function. While model-based approaches of-
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fer great performance, they are usually harder to fit
due to their added complexity. The simplicity of our
solution helps to decrease distributional shift using
a easy-to-use technique with few parameters.

3.4 Datasets and metrics

Datasets used in Offline RL are usually col-
lected by generating rollouts of a final policy πβ
(optimal or not) or extracting data from the replay
buffer used by online algorithms in their training
phase. Work with realistic problems and data also
is open to managing handcrafted policies and expe-
rience tuples which can break the Markovian prop-
erty. It is therefore ideal to be able to work with
real-world data to be aware of these kinds of chal-
lenges.

The first aspect to consider when choosing a
dataset is the nature of the data: discrete or con-
tinuous. Dealing with continuous data is difficult
and requires complex solutions that take advan-
tage of the computational power of neural networks.
All state-of-the-art solutions developed since the re-
lease of BCQ [13] work on this line.

Another aspect to consider is the stochastic dy-
namics in the environment because of the con-
nection to real world problems (e.g., economics,
healthcare, education, etc.). However common
suites and benchmarks have a lack of this kind of
data (despite the Atari domains, which are well-
known stochastic simulators [23]).

Data distribution and action-state space cover-
age have play an important role in dataset config-
uration and how this can affect the final outcome.
Batch data collected by expert policies will be char-
acterized by containing full rollouts leading to good
solutions but the space may not be well covered. On
the other side, random or suboptimal logging poli-
cies provides more coverage but it does not have to
be complete. Design datasets with risky biases is
important due to if a dangerous region is covered it
will evaluated and the it will be known by the agent.

D4RL [6] and RL Unplugged [24] are two of
the most extended benchmark in literature. Both
provide fixed datasets of different tasks with differ-
ent logging configurations. In D4RL we find Mu-
JoCo datasets, CARLA simulator data and maze en-
vironments among others. RL Unplugged, on its
side, contains Atari games data, locomotion task
and real world applications.

4 Discrete Uncertainty Quantifica-
tion for Offline RL (DUQ)

DUQ is a simple approach to quantify uncer-
tainty using the discretization of the state space.
This information is received by the agent through
the reward and used in the learning process to avoid
less-known regions. In the following section, we
motivate this concept and include its formal defini-
tion by firstly introduce some definitions and con-
cepts from vector quantization literature, as Voronoi
regions.

4.1 DUQ Metric

A vector quantizier Q of dimension k and size
N is a mapping from a vector in k-dimensional Eu-
clidean space, Rk, into a finite set C containing N
output or reproduction points, called code vectors
or centroids [25]. Thus,

Q : Rk →C (2)

where C = {c1,c2, ...,cn} and ci ∈ R k.

Associated with every centroid ci is a partition
or cell, Ri [25], defined by:

Ri = {x ∈ Rk : Q(x) = ci} (3)

i.e., Ri is composed of all points x belonging to clus-
ter ci. In turn, each Ri consists of all points x which
have less distorsion when encoded with centroid ci

than with any other [25]:

Ri = {x : dist(x,ci)≤ dist(x,c j), i ̸= j} (4)

where dist(x,y) is computed as dist(x,y) = ||x −
y||2. The Voronoi regions Ri can be obtained with
clustering techniques such as k-means or mini batch
k-means. Inside these algorithms, the well-known
Lloyd’s Iteration is computed [26]. Given the set of
centroids C and their Voronoi regions R (both could
be random or the result of a previous iteration), cen-
troids are iteratively recalculated by:

centroid(Ri) =
1
|Ri| ∑

x∈R
x (5)

The main objective is to minimize the mean dis-
tortion for all centroids of set C.
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fer great performance, they are usually harder to fit
due to their added complexity. The simplicity of our
solution helps to decrease distributional shift using
a easy-to-use technique with few parameters.

3.4 Datasets and metrics

Datasets used in Offline RL are usually col-
lected by generating rollouts of a final policy πβ
(optimal or not) or extracting data from the replay
buffer used by online algorithms in their training
phase. Work with realistic problems and data also
is open to managing handcrafted policies and expe-
rience tuples which can break the Markovian prop-
erty. It is therefore ideal to be able to work with
real-world data to be aware of these kinds of chal-
lenges.

The first aspect to consider when choosing a
dataset is the nature of the data: discrete or con-
tinuous. Dealing with continuous data is difficult
and requires complex solutions that take advan-
tage of the computational power of neural networks.
All state-of-the-art solutions developed since the re-
lease of BCQ [13] work on this line.

Another aspect to consider is the stochastic dy-
namics in the environment because of the con-
nection to real world problems (e.g., economics,
healthcare, education, etc.). However common
suites and benchmarks have a lack of this kind of
data (despite the Atari domains, which are well-
known stochastic simulators [23]).

Data distribution and action-state space cover-
age have play an important role in dataset config-
uration and how this can affect the final outcome.
Batch data collected by expert policies will be char-
acterized by containing full rollouts leading to good
solutions but the space may not be well covered. On
the other side, random or suboptimal logging poli-
cies provides more coverage but it does not have to
be complete. Design datasets with risky biases is
important due to if a dangerous region is covered it
will evaluated and the it will be known by the agent.

D4RL [6] and RL Unplugged [24] are two of
the most extended benchmark in literature. Both
provide fixed datasets of different tasks with differ-
ent logging configurations. In D4RL we find Mu-
JoCo datasets, CARLA simulator data and maze en-
vironments among others. RL Unplugged, on its
side, contains Atari games data, locomotion task
and real world applications.

4 Discrete Uncertainty Quantifica-
tion for Offline RL (DUQ)

DUQ is a simple approach to quantify uncer-
tainty using the discretization of the state space.
This information is received by the agent through
the reward and used in the learning process to avoid
less-known regions. In the following section, we
motivate this concept and include its formal defini-
tion by firstly introduce some definitions and con-
cepts from vector quantization literature, as Voronoi
regions.

4.1 DUQ Metric

A vector quantizier Q of dimension k and size
N is a mapping from a vector in k-dimensional Eu-
clidean space, Rk, into a finite set C containing N
output or reproduction points, called code vectors
or centroids [25]. Thus,

Q : Rk →C (2)

where C = {c1,c2, ...,cn} and ci ∈ R k.

Associated with every centroid ci is a partition
or cell, Ri [25], defined by:

Ri = {x ∈ Rk : Q(x) = ci} (3)

i.e., Ri is composed of all points x belonging to clus-
ter ci. In turn, each Ri consists of all points x which
have less distorsion when encoded with centroid ci

than with any other [25]:

Ri = {x : dist(x,ci)≤ dist(x,c j), i ̸= j} (4)

where dist(x,y) is computed as dist(x,y) = ||x −
y||2. The Voronoi regions Ri can be obtained with
clustering techniques such as k-means or mini batch
k-means. Inside these algorithms, the well-known
Lloyd’s Iteration is computed [26]. Given the set of
centroids C and their Voronoi regions R (both could
be random or the result of a previous iteration), cen-
troids are iteratively recalculated by:

centroid(Ri) =
1
|Ri| ∑

x∈R
x (5)

The main objective is to minimize the mean dis-
tortion for all centroids of set C.
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We now have all the ingredients for the defini-
tion for the proposed DUQ metric. DUQ metric can
be defined as Equation 6 shows:

DUQ(x) = |Ri|,x ∈ Ri (6)

i.e., the DUQ of a state x is the number of instances
|Ri| of its corresponding Voronoi region Ri. To
use the metric for training requires some additional
transformations which are described next.

4.2 Apply DUQ to training

The above-formalized metric is applied to the
training process through the reward function. A re-
ward reshape is performed that takes into account
the quantified uncertainty. First, DUQ metric is cal-
culated and yields a result like the one shown in
Figure 2. It shows the number of instances of each
Voronoi region, for a specific dataset.

Figure 2. DUQ Metric without reshape.

This metric is not homogeneous: its values de-
pend on the number of available data points and the
number of clusters chosen. Specifically, in Figure 2,
the number of clusters chosen is 1024 and the met-
ric is approximately in the range [0-3000].

In order to obtain an homogeneous result, we
add a transformation τp to weight and reshape the
DUQ metric. This allows us to experiment with dif-
ferent shapes of the distribution W DUQ

p : τp ·DUQ.
The transformation τp consists on a sigmoidal func-
tion in which the parameter p defines the input
range of the function; τp(di) =

1
1+e−di (p)

. Some ex-
amples of this functions are shown later in Figure 3.

The last step is to use the reshaped DUQ met-
ric in the reward function of the learning agent to
ensure that the states with a low DUQ are avoided.

This new reward function is defined in Equation 7.
rDUQ(s,a,s′) = roriginal(s,a,s′) ·W DUQ

p (s′) (7)

where W DUQ
p (s) = τp(s) ·DUQ(s)

4.3 DUQ Algorithm

Given the previous definitions, the steps neces-
sary to obtain the collection of centroids and their
Voronoi regions follow Algorithm 1. The clustering
process is applied on the state space, in this case, on
the set of states s. K-means or mini batch K-means
can be used as a clustering technique.

Once the clusters and their discretizations have
been obtained, the training data can be transformed
according to Algorithm 2. For each tuple in the
data, it is queried to which region v = R the state
sn belongs. When this value is obtained, W DUQ

p (sn)
is applied to sn. DUQ(sn) is the count |v| of in-
stances in the region and τp(sn) is the sigmoidal re-
shape. The original tuple reward is multiplied by
W DUQ

p (sn) as indicated in Section 4.2. The new
dataset D′ can be used to train with any Offline RL
algorithm.

Algorithm 1 Learn discretization
Require: D (experience tuples), k (number of clus-

ters)
1: n = 0, D′ = /0
2: while n < |D| do
3: Take sn from (sn,an,sn+1,rn) ∈ D
4: D′ = D′ ∪ sn

5: n = n+1
6: end while
7: Learn discretization C = {c1,c2, ...,ck} and par-

tition R = {r1,r2, ...,rk} from D′ using k-means
(see Section 4.1)

8: Return C

Algorithm 2 Apply DUQ to dataset
Require: D (experience tuples), C (centroids)

1: n = 0,D′ = /0
2: while n < |D| do
3: Take t = (sn,an,sn +1,rn) ∈ D
4: Compute region v = R(C(sn))
5: W DUQ

p (sn) = τp(sn) · DUQ(sn) with
DUQ(sn) = |v|

6: rDUQ = rn ·W DUQ
p (sn)

7: D′ = D′ ∪ (sn,an,sn+1,rDUQ)
8: n = n+1
9: end while

10: Return D′
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4.4 Implementation

Below, we describe the steps we follow to code
our approach.

1. To calculate the DUQ metric is necessary to
discretize the state space where frequency of
states can be computed. Therefore, this step con-
sists of the normalization and discretization of
that data. As introduced above, we have cho-
sen to apply k-means or mini-batch k-means,
depending on the dataset size, implemented in
scikit-learn [27]. The appropriate number of
clusters depends on the dataset used. In our ex-
periments, we have obtained several combina-
tions based on the distortion observed in the dis-
cretization process.

2. Next, the DUQ metric is computed for all the
datasets based on the number of instances by
cluster. Since this measure will be used as a
weight to reshape the reward, it has to be nor-
malized in the range [0,1]. Moreover, to make
it even smoother and avoid abrupt changes be-
tween different clusters, a transformation with a
sigmoidal function is applied to the number of
instances of each cluster, as defined above.

The range of the DUQ metric, i.e. the minimum
and maximum value of the distribution, modifies
the shape of the final distribution obtained after
applying the sigmoidal function. This range is
used as a parameter to experiment with differ-
ent shapes. To define this parameter, it is neces-
sary to select a minimum and maximum value to
scale the distribution. Once the transformation
has been applied, we get the previously defined
W DUQ.

In Figure 3, we show a couple of examples
of the uncertainty measure by cluster processed
and ready to use in the training process, i.e.
the W DUQ. In these figures, the number of in-
stances by cluster have been ordered from low-
est to highest. In this examples we use different
range for the DUQ metric. The first example is
much smoother than the second since in most
of the clusters the original reward is preserved
(W DUQ = 1). However, in the second one, it is
penalized more frequently. This form has usu-
ally shown the best results, as described in the
following section.

5 Evaluation

In this section, we summary the evalua-
tion performed to evaluate the performance of DUQ
when compared with other approaches. First, the
domains and datasets (see Section 5.1). Second, the
experimental setup where relevant hyperparameters
are described and how the experimentation was car-
ried out (see Section 5.2). Finally, the results are
reviewed providing the learning curves and the pa-
rameters used (see Section 5.2).

5.1 Domains and datasets

There are many domains modeled as environ-
ments under the Gym [28] library, but only a part
of them have good offline datasets to perform Of-
fline Reinforcement Learning. In data-driven deep
RL, the D4RL datasets [6] are widely employed by
the research community in numerous recently pub-
lished papers. Although we have run experiments in
other classic domains, such as CartPole or Moun-
tain Car[28], we present the results of those from
D4RL to seamlessly compare with other works.

Specifically, we have obtained results from
the MuJoCo environments Hopper, HalfCheetah,
Walker2D and Ant which have available datasets in
D4RL. The space and action spaces in these envi-
ronments are continuous, so getting good results is
more challenging than in discrete classic environ-
ments. D4RL offers different types of datasets for
the same environments. In our case, we have chosen
the option called Medium. In this option, the data
is generated by first training a policy using SAC,
then early-stopping the training, and finally collect-
ing 1M samples from this partially-trained policy.
The reason we use this type of data is that we want
to achieve good results from experience tuples ob-
tained from a poor policy, which is more similar
to what happens in real-world problem-solving. If
very good policies are available, other approaches
as behavioural cloning have more sense.

5.2 Experimental setup

The experiments have been performed using the
current state-of-the-art algorithms CQL, BCQ and
SAC in an offline manner, and modifying their pa-
rameters. We have decided to compare our ap-
proach with CQL and BCQ since they are amongst
the first well-known data-driven methods for Of-
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4.4 Implementation

Below, we describe the steps we follow to code
our approach.

1. To calculate the DUQ metric is necessary to
discretize the state space where frequency of
states can be computed. Therefore, this step con-
sists of the normalization and discretization of
that data. As introduced above, we have cho-
sen to apply k-means or mini-batch k-means,
depending on the dataset size, implemented in
scikit-learn [27]. The appropriate number of
clusters depends on the dataset used. In our ex-
periments, we have obtained several combina-
tions based on the distortion observed in the dis-
cretization process.

2. Next, the DUQ metric is computed for all the
datasets based on the number of instances by
cluster. Since this measure will be used as a
weight to reshape the reward, it has to be nor-
malized in the range [0,1]. Moreover, to make
it even smoother and avoid abrupt changes be-
tween different clusters, a transformation with a
sigmoidal function is applied to the number of
instances of each cluster, as defined above.

The range of the DUQ metric, i.e. the minimum
and maximum value of the distribution, modifies
the shape of the final distribution obtained after
applying the sigmoidal function. This range is
used as a parameter to experiment with differ-
ent shapes. To define this parameter, it is neces-
sary to select a minimum and maximum value to
scale the distribution. Once the transformation
has been applied, we get the previously defined
W DUQ.

In Figure 3, we show a couple of examples
of the uncertainty measure by cluster processed
and ready to use in the training process, i.e.
the W DUQ. In these figures, the number of in-
stances by cluster have been ordered from low-
est to highest. In this examples we use different
range for the DUQ metric. The first example is
much smoother than the second since in most
of the clusters the original reward is preserved
(W DUQ = 1). However, in the second one, it is
penalized more frequently. This form has usu-
ally shown the best results, as described in the
following section.

5 Evaluation

In this section, we summary the evalua-
tion performed to evaluate the performance of DUQ
when compared with other approaches. First, the
domains and datasets (see Section 5.1). Second, the
experimental setup where relevant hyperparameters
are described and how the experimentation was car-
ried out (see Section 5.2). Finally, the results are
reviewed providing the learning curves and the pa-
rameters used (see Section 5.2).

5.1 Domains and datasets

There are many domains modeled as environ-
ments under the Gym [28] library, but only a part
of them have good offline datasets to perform Of-
fline Reinforcement Learning. In data-driven deep
RL, the D4RL datasets [6] are widely employed by
the research community in numerous recently pub-
lished papers. Although we have run experiments in
other classic domains, such as CartPole or Moun-
tain Car[28], we present the results of those from
D4RL to seamlessly compare with other works.

Specifically, we have obtained results from
the MuJoCo environments Hopper, HalfCheetah,
Walker2D and Ant which have available datasets in
D4RL. The space and action spaces in these envi-
ronments are continuous, so getting good results is
more challenging than in discrete classic environ-
ments. D4RL offers different types of datasets for
the same environments. In our case, we have chosen
the option called Medium. In this option, the data
is generated by first training a policy using SAC,
then early-stopping the training, and finally collect-
ing 1M samples from this partially-trained policy.
The reason we use this type of data is that we want
to achieve good results from experience tuples ob-
tained from a poor policy, which is more similar
to what happens in real-world problem-solving. If
very good policies are available, other approaches
as behavioural cloning have more sense.

5.2 Experimental setup

The experiments have been performed using the
current state-of-the-art algorithms CQL, BCQ and
SAC in an offline manner, and modifying their pa-
rameters. We have decided to compare our ap-
proach with CQL and BCQ since they are amongst
the first well-known data-driven methods for Of-
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Figure 3. Uncertainty measure by cluster ready to use in the training process.

fline RL. There are many parameters to consider;
those related to our approach are:

1. Number of clusters: It is the amount of clus-
ters used to group the data and calculate the un-
certainty measure (k parameter of k-means algo-
rithm); i.e. then number of Voronoi Regions.

2. Input range of the sigmoidal: It is the range
used to normalize the number of instances by
cluster to calculate the uncertainty measure, as
shown in Equation 6.

3. Common parameters: It is also necessary to
experiment with other parameters, such as learn-
ing rate, batch size, or number of episodes, to
name a few. Parameters values used in our ex-
periments are described in the following section
(see Section 5.2).

In order to run the experiments, the implemen-
tation of the algorithms used has been provided by
d3rlpy [29]. This library is an Offline Deep Rein-
forcement Learning API for researches which im-
plements state-of-the-art algorithms such as CQL or
BCQ.

The experimentation carried out consists of
replicating the execution of CQL, BCQ and SAC
in an offline manner alongside the execution using
the modifications produced by DUQ. Thus we eval-
uate DUQ solution against the true performance of
these algorithms in the common D4RL benchmark.
Reproducing the baseline gives us a better under-
standing of the performance of the algorithms and
allows us to have more references than the results
published in the source papers.

The results will be formatted as D4RL has es-
tablished by normalizing final scores between 0
(performance given by a random policy) and 100
(performance given by an expert policy). These two
values are provided by the benchmark. The results
are going to be the average performance of two in-
dependent executions (random seeds).

In addition to numerical value reports, we plot
the average performance of the policy over training
time. Every point drawn on the plots is the average
accumulated reward earned over 10 test episodes
performed in an online manner following the deci-
sions of the policy that is being trained.

In order to facilitate the reproducibility of the
experiments, we show the parameters used for the
final experiments in Appendix 6.

The actor and critic learning rate and the
batch size are not listed in this table since we use
the same values for each algorithm. CQL uses
0.0001 for actor and 0.0003 for critic learning rate,
BCQ uses 0.001 for actor and critic learning rate
and SAC uses 0.0003 for actor and critic learning
rate. We used a batch size of 256 for all experi-
ments.

The number of clusters and the sigmoidal range
for a specific task are obtained through experimen-
tation. The negative value of the range controls the
lower bound of the metric (a larger negative value
means more regions scored as 0), while on the other
hand, the positive value controls the upper bound
(larger values mean more regions marked as 1).
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Table 1. Experimental results

5.3 Experimental results

In Table 1, we show the numeric results ob-
tained by executing the CQL, BCQ and SAC algo-
rithms in the four different domains, both using the
original reward and our modified reward to account
for uncertainty of the dataset. We have obtained the
score and standard deviation values from two inde-
pendent executions. As it can be seen, the modi-
fied reward (DUQ) improves the final results in 3 of
the 4 domains tested in most cases. Moreover, in a
couple of tests, the improvement is quite significant
compared with the original result.

For a more detailed view of the behavior of
the experiments performed, we present Figures 4,
5 and 6. These graphs show the evolution of the
reward obtained during the agent’s learning. The
horizontal axis represents the training epochs, with
an epoch being each time the algorithm has worked
with the entire dataset. On the other hand, the verti-
cal axis represents the average accumulated reward
earned over 10 test episodes. In order to smooth
the noise in the learning curves and improve visual-
ization a moving average is applied. Therefore, the
learning evolution curves that are being trained with
different dataset setups are drawn on plots. Origi-
nal Reward refers to the original execution of the
algorithm without changes in the dataset and, on
the other side, modified reward refers to executions
that are using datasets modified by DUQ. Check the
above section for more details about the plots.

From these graphs, we can draw several con-
clusions. The first finding is that, with varying de-
grees of success, our modified reward consistently
beats the original reward. The second one is that our

modification reaches high and stable scores more
rapidly than the unmodified baseline. The follow-
ing sections discuss the results obtained in each of
the environments.

Hopper environment is the only one in which
the DUQ technique is not able to improve previous
results. Mujoco Hopper is the simplest of the en-
vironments studied (fewer articulations and dimen-
sions in the action space). One of the reasons for
these results may be the simplicity of the environ-
ment leading to the identification of unknown re-
gions worsening performance rather than enhancing
it.

A common issue in the experiments carried out
and also, in the results given by D4RL, is the poor
performance of SAC in an offline manner. This
may be due to the aforementioned concept that al-
gorithms of an online nature fail when working with
batch data.

In Halfcheetah environment, DUQ modifica-
tions improve the performance given by the three
techniques tested. Particularly interesting is the
large improvement in the performance of the SAC
algorithm. Figure 4 depicts the reward evolution
during training in the HalfCheetah domain using
BCQ and SAC algorithms. In the same plot, we
see the experiment that utilizes the original and the
modified reward

Algorithm Reward (Mean ± SD)

hopper-medium halfcheetah-medium walker2d-medium ant-medium

CQL
original 79.84 ± 4.98 24.38 ± 1.69 75.73 ± 0.92 4.77 ± 0.16
DUQ 30.01 ± 0.03 40.21 ± 5.42 81.35 ± 0.26 18.33 ± 3.25

BCQ
original 74.48 ± 2.95 41.09 ± 0.07 69.55 ± 2.9 75.99 ± 3.46
DUQ 30.25 ± 0.05 43.29 ± 0.02 72.17 ± 1.70 90.35 ± 0.43

SAC
original 0.71 ± 0.04 10.96 ± 3.03 1.89 ± 1.61 -46.72 ± 0.17
DUQ 0.75 ± 0.02 41.63 ± 1.64 1.61 ± 1.42 -46.62 ± 0.13

The results have been normalized according to the D4RL paper [6]. We highlight the experiments in which our approach obtains 
better results.
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Table 1. Experimental results

5.3 Experimental results

In Table 1, we show the numeric results ob-
tained by executing the CQL, BCQ and SAC algo-
rithms in the four different domains, both using the
original reward and our modified reward to account
for uncertainty of the dataset. We have obtained the
score and standard deviation values from two inde-
pendent executions. As it can be seen, the modi-
fied reward (DUQ) improves the final results in 3 of
the 4 domains tested in most cases. Moreover, in a
couple of tests, the improvement is quite significant
compared with the original result.

For a more detailed view of the behavior of
the experiments performed, we present Figures 4,
5 and 6. These graphs show the evolution of the
reward obtained during the agent’s learning. The
horizontal axis represents the training epochs, with
an epoch being each time the algorithm has worked
with the entire dataset. On the other hand, the verti-
cal axis represents the average accumulated reward
earned over 10 test episodes. In order to smooth
the noise in the learning curves and improve visual-
ization a moving average is applied. Therefore, the
learning evolution curves that are being trained with
different dataset setups are drawn on plots. Origi-
nal Reward refers to the original execution of the
algorithm without changes in the dataset and, on
the other side, modified reward refers to executions
that are using datasets modified by DUQ. Check the
above section for more details about the plots.

From these graphs, we can draw several con-
clusions. The first finding is that, with varying de-
grees of success, our modified reward consistently
beats the original reward. The second one is that our

modification reaches high and stable scores more
rapidly than the unmodified baseline. The follow-
ing sections discuss the results obtained in each of
the environments.

Hopper environment is the only one in which
the DUQ technique is not able to improve previous
results. Mujoco Hopper is the simplest of the en-
vironments studied (fewer articulations and dimen-
sions in the action space). One of the reasons for
these results may be the simplicity of the environ-
ment leading to the identification of unknown re-
gions worsening performance rather than enhancing
it.

A common issue in the experiments carried out
and also, in the results given by D4RL, is the poor
performance of SAC in an offline manner. This
may be due to the aforementioned concept that al-
gorithms of an online nature fail when working with
batch data.

In Halfcheetah environment, DUQ modifica-
tions improve the performance given by the three
techniques tested. Particularly interesting is the
large improvement in the performance of the SAC
algorithm. Figure 4 depicts the reward evolution
during training in the HalfCheetah domain using
BCQ and SAC algorithms. In the same plot, we
see the experiment that utilizes the original and the
modified reward
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Nomenclature of experiments in legend: Algorithm
(BCQ) - type of experiment (modifiedReward) -

Input range of the sigmoidal ([-10,25]) - Number
of clusters (1024)

Figure 4. HalfCheetah Medium Dataset. BCQ and
SAC. Original and modified reward (DUQ)

comparison.

In the experiments run on the Walker2D en-
vironment, it is relevant to note that the perfor-
mance of CQL and BCQ is improved with DUQ,
and the results are good and close to the optimal
value provided by D4RL. Figure 5 shows the reward
evolution during training in the Walker2D domain
using CQL and BCQ algorithms.

Nomenclature of experiments in legend: Algorithm
(CQL) - type of experiment (modifiedReward) -

Input range of the sigmoidal ([-10,25]) - Number
of clusters (512)

Figure 5. Walker 2D Medium Dataset. CQL and
BCQ. Original and modified reward (DUQ)

comparison.

Working with Ant is complicated and the
literature does not usually offer results with this en-
vironment. However, testing DUQ on data from this
environment provides more evidence and allows the
mechanism to be evaluated in more complicated sit-
uations. The Ant’s state space consists of 27 contin-
uous variables that describe the angles, velocities,
and positions of Ant joints. DUQ improves per-
formance over the original executions of CQL and
BCQ. Figure 6 shows the training evolution in the
Ant domain using BCQ.

Nomenclature of experiments in legend: Algorithm
(BCQ) - type of experiment (modifiedReward) -

Input range of the sigmoidal ([-10,25]) - Number
of clusters (2048)

Figure 6. Ant Medium Dataset. BCQ. Original
and modified reward (DUQ) comparison.
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6 Conclusions

In this paper, we present Discrete Un-
certainty Quantification Approach for Offline RL
(DUQ), which provides a simple approach to par-
tially mitigate the distributional shift through an ef-
fortless uncertainty quantification method. Addi-
tionally, we have also shown how it is easily appli-
cable on top of Offline RL algorithms. Our experi-
ments show that our approach improves the perfor-
mance in several MuJoCo environments compared
to standard benchmarks from D4RL. We believe
that DUQ can be used extensively as an additional
technique to any other, helping to achieve better and
more stable results.

As future work, we consider the option of cal-
culating the uncertainty measure by discretizing not
only the states, but also the actions, so that state-
action pairs are considered. In this way, it would be
possible to evaluate which actions are more or less
known in a state. Additionally. the team is work-
ing in incorporate DUQ main ideas in model based
Offline RL techniques, applying the approach in the
detection of state space unknown regions.
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6 Conclusions

In this paper, we present Discrete Un-
certainty Quantification Approach for Offline RL
(DUQ), which provides a simple approach to par-
tially mitigate the distributional shift through an ef-
fortless uncertainty quantification method. Addi-
tionally, we have also shown how it is easily appli-
cable on top of Offline RL algorithms. Our experi-
ments show that our approach improves the perfor-
mance in several MuJoCo environments compared
to standard benchmarks from D4RL. We believe
that DUQ can be used extensively as an additional
technique to any other, helping to achieve better and
more stable results.

As future work, we consider the option of cal-
culating the uncertainty measure by discretizing not
only the states, but also the actions, so that state-
action pairs are considered. In this way, it would be
possible to evaluate which actions are more or less
known in a state. Additionally. the team is work-
ing in incorporate DUQ main ideas in model based
Offline RL techniques, applying the approach in the
detection of state space unknown regions.
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Tom Le Paine, Sergio Gómez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel
Mankowitz, Cosmin Paduraru, Gabriel Dulac-
Arnold, Jerry Li, Mohammad Norouzi, Matt Hoff-
man, Ofir Nachum, George Tucker, Nicolas Heess,
and Nando deFreitas. Rl unplugged: Benchmarks
for offline reinforcement learning, 2020.

[25] Allen Gersho. Vector quantization and signal com-
pression. Kluwer international series in engineer-
ing and computer science. Communications and
information theory. : Kluwer Academic, Boston,
1992.

[26] S. Lloyd. Least squares quantization in pcm. IEEE
Transactions on Information Theory, 28(2):129–
137, 1982.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[28] Greg Brockman, Vicki Cheung, Ludwig Petters-
son, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[29] Michita Imai Takuma Seno. d3rlpy: An offline
deep reinforcement library. In NeurIPS 2021 Of-
fline Reinforcement Learning Workshop, Decem-
ber 2021.

Sergio Pérez is a Research Scientist at 
Repsol Technology Lab. He received 
his M.Sc. in Telecommunication Engi-
neering from UPM in 2020. His rese-
arch interests include Deep Learning 
and Reinforcement Learning applied 
to real-world industrial applications. 
https://orcid.org/0000-0002-2191-4974

Javier Corrochano Jiménez is an MSc 
in Computer Science Engineering. 
During his tenure at the Planning and 
Learning Group at Universidad Carlos 
III de Madrid, he contributed to the 
research, development, and implemen-
tation of algorithms in the field of offli-
ne reinforcement learning. Currently, 
as a Computer Vision Engineer, he is 

actively involved in cutting-edge research projects for major 
infrastructure companies.
https://orcid.org/0000-0003-3687-700X
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Apendix A Experimental parameters

Table 2. Experimental parameters

Domain Reward Algorithm epochs No Clusters Sigm. range
original CQL 400 - -
original BCQ 400 - -
original SAC 250 - -
DUQ CQL 400 1024 [-10,25]
DUQ BCQ 400 1024 [-10,25]

hopper-medium
hopper-medium
hopper-medium
hopper-medium
hopper-medium
hopper-medium DUQ SAC 250 1024 [-10,25]

halfchetah-medium original CQL 400 - -
halfchetah-medium original BCQ 400 - -
halfchetah-medium original SAC 250 - -
halfchetah-medium DUQ CQL 400 1024 [-10,25]
halfchetah-medium DUQ BCQ 400 2048 [-10,25]
halfchetah-medium DUQ SAC 250 1024 [-10,25]
walker2d-medium original CQL 400 - -
walker2d-medium original BCQ 400 - -
walker2d-medium original SAC 250 - -

DUQ CQL 400 512 [-10,25]
DUQ BCQ 400 2048 [-10,25]
DUQ SAC 250 1024 [-10,25]

original CQL - - -
original BCQ - - -
original SAC - - -
DUQ CQL 250 4096 [-10,25]
DUQ BCQ 250 1024 [-10,25]

walker2d-medium
walker2d-medium
walker2d-medium

ant-medium
ant-medium
ant-medium
ant-medium
ant-medium
ant-medium DUQ SAC 250 1024 [-10,25]

No Clusters: Number of Clusters, Sigm. range: Input range of the sigmoidal function


