PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machinability investigation during turning of polyoxymethylene POM-C and optimization of cutting parameters using Pareto analysis, linear regression and genetic algorithm

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
This paper presents a study on the dry turning of polyoxymethylene copolymer POM-C. The effect of five factors (cutting speed, feed rate, depth of cut, nose radius, and main cutting edge angle) on machinability is evaluated using four output parameters: surface roughness, tangential force, cutting power, and material removal rate. To do so, the study relies on three approaches: (i) Pareto statistical analysis, (ii) multiple linear regression modeling, and (iii) optimization using the genetic algorithm. To conduct the investigation, mathematical models are developed using response surface methodology based on the Taguchi 𝐿16 orthogonal array. The results indicate that feed rate, nose radius, and cutting edge angle significantly influence surface quality, while depth of cut, feed, and speed have a notable impact on other machinability parameters. The developed mathematical models have determination coefficients greater than or very close to 95%, making them very useful for the industry as they allow predicting response values based on the chosen cutting parameters. Finally, the optimization using the genetic algorithm proves to be promising and effective in determining the optimal cutting parameters to maximize productivity while improving surface quality.
Rocznik
Strony
47--71
Opis fizyczny
Bibliogr. 44 poz., tab., wykr., rys.
Twórcy
autor
  • Laboratory of Mechanical Engineering, Materials and Structures, Tissemsilt University, Algeria
autor
  • Laboratory of Mechanical Engineering, Materials and Structures, Tissemsilt University, Algeria
  • Applied Mechanics and Energy Systems Laboratory, Faculty of Applied Sciences, Kasdi Merbah Ouargla University, Algeria
  • Mechanics and Structures Research Laboratory (LMS), Guelma, Algeria
  • Mechanics Research Centre, Constantine, Algeria
  • Mechanics and Structures Research Laboratory (LMS), Guelma, Algeria
  • Mechanics and Structures Research Laboratory (LMS), Guelma, Algeria
Bibliografia
  • [1] A.I. Alateyah, Y. El-Taybany, S. El-Sanabary, W.H. El-Garaihy, and H. Kouta. Experimental investigation and optimization of turning polymers using RSM, GA, hybrid FFD-GA, and MOGA methods. Polymers, 14(17):3585, 2022. doi: 10.3390/polym14173585.
  • [2] M. Madić, D. Marković, and M. Radovanović. Mathematical modeling and optimization of surface roughness in turning of polyamide based on artificial neural network. MECHANIKA, 18(5):574–581, 2012. doi: 10.5755/j01.mech.18.5.2701.
  • [3] K. Palanikumar. Modeling and analysis for surface roughness in machining glass fibre reinforced plastics using response surface methodology. Materials and Design, 28:2611–2618, 2007a. doi: 10.1016/j.matdes.2006.10.001.
  • [4] K. Palanikumar and J. Paulo Davim. Mathematical model to predict tool wear on the machining of glass fibre reinforced plastic composites. Materials and Design 28:2008–2014, 2007b. doi: 10.1016/j.matdes.2006.06.018.
  • [5] V.N. Gaitonde, S.R. Karnik, F. Mata, and J. Paulo Davim. Taguchi approach for achieving better machinability in unreinforced and reinforced polyamides. Journal of Reinforced Plastics and Composites, 27(9):909–924, 2008. doi: 10.1177/0731684407085875.
  • [6] F. Mata, P. Reis, and J. Paulo Davim. Physical cutting model of polyamide composites (PA66 GF30). Materials Science Forum, 514-516:643–647, 2006. doi: 10.4028/www.scientific.net/MSF.514-516.643.
  • [7] A. Chabbi, M.A. Yallese, M. Nouioua, I. Meddour, T. Mabrouki, and F. Girardin. Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods. International Journal of Advanced Manufacturing Technology, 91:2267–2290, 2017a. doi: 10.1007/s00170-016-9858-8.
  • [8] A. Chabbi, M.A. Yallese, M. Nouioua, I. Meddour, T. Mabrouki, and F. Girardin. Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement, 95:99–115, 2017b. doi: 10.1016/j.measurement.2016.09.043.
  • [9] M. Alauddin, I.A. Choudhury, M.A. E1 Baradie, and M.S.J. Hashmi. Plastics and their machining: a review. Journal of Materials Processing Technology, 54:40–46, 1995. doi: 10.1016/0924-0136(95)01917-0.
  • [10] J. Paulo Davim and F. Mata. Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools. International Journal of Advanced Manufacturing Technology, 26:319–323, 2005. doi: 10.1007/s00170-003-2006-2.
  • [11] J. Paulo Davim and F. Mata. A comparative evaluation of the turning of reinforced and unreinforced polyamide. International Journal of Advanced Manufacturing Technology, 33:911–914, 2007. doi: 10.1007/s00170-006-0520-8.
  • [12] J. Paulo Davim, L.R. Silva,A. Festas, and A.M. Abrão. Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Materials and Design, 30:228–234, 2009. doi: 10.1016/j.matdes.2008.05.003.
  • [13] K. Palanikumar, T. Rajasekaran, and B. Latha. Fuzzy rule-based modeling of machining parameters for surface roughness in turning carbon particle-reinforced polyamide. Journal of Thermoplastic Composite Materials, 28(10):1387–1405, 2015. doi: 10.1177/0892705713513282.
  • [14] N. Hamlaoui, S. Azzouz, K. Chaoui, Z. Azari, and M.A. Yallese. Machining of tough polyethylene pipe material: surface roughness and cutting temperature optimization. International Journal of Advanced Manufacturing Technology, 92:2231–2245, 2017. doi: 10.1007/s00170-017-0275-4.
  • [15] F.M. Cabrera, D. Fuentes, I. Hanafi, A. Khamlichi, and A. Jabbouri. Multi-criteria optimization using Taguchi and grey relational analysis in CNC Turning of PEEK CF30. Journal of Thermoplastic Composite Materials. 25(11):101–114, 2012. doi: 10.1177/0892705711405248.
  • [16] F.M. Cabrera, E. Beamud, and I. Hanafi. Fuzzy logic-based modeling of surface roughness parameters for CNC turning of PEEK CF30 by TiN-Coated cutting tools. Journal of Thermoplastic Composite Materials, 24(3):399–413, 2010. doi: 10.1177/0892705710391562.
  • [17] H. Akkuş and H. Yaka. Optimization of cutting parameters in turning of titanium alloy (Grade 5) by analyzing surface roughness, tool wear and energy consumption. Experimental Techniques, 46:945–956, 2022. doi: 10.1007/s40799-021-00525-6.
  • [18] G. Özden, F. Mata, and M.Ö. Öteyaka. Artificial neural network modeling for prediction of cutting forces in turning unreinforced and reinforced polyamide. Journal of Thermoplastic Composite Materials, 34(3):353–363, 2019. doi: 10.1177/089270571984.
  • [19] V.N. Gaitonde, S.R. Karnik, F. Mata, and J. Paulo Davim. Modeling and analysis of machinability characteristics in PA6 and PA66 GF30 polyamides through artificial neural network. Journal of Thermoplastic Composite Materials, 23(3):313–336, 2010. doi: 10.1177/0892705709349319.
  • [20] N. Baroiu, G.A. Costin, V.G. Teodor, D. Nedelcu, and V. Tabacaru. Prediction of surface roughness in drilling of polymers using a geometrical model and artificial neural networks. Materiale Plastice 57(3):160–173, 2020. doi: 10.37358/MP.20.3.5390.
  • [21] V. Tabacaru. Artificial neural networks applied to prediction of surface roughness in dry drilling of some polymers. IOP Conf. Ser.: Mater. Sci. Eng., 916 012117, 2020. doi: 10.1088/1757-899X/916/1/012117.
  • [22] A. Zerti, M.A. Yallese, O. Zerti, M. Nouioua, and R. Khettabi. Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13):4439–4462, 2019a. doi: 10.1177/0954406218820557.
  • [23] A. Zerti, M.A. Yallese, I. Meddour, S. Belhadi, A. Haddad, and T. Mabrouki. Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power and maximizing productivity for tempered stainless steel AISI 420 in turning operations. International Journal of Advanced Manufacturing Technology, 102:135–157, 2019b. doi: 10.1007/s00170-018-2984-8.
  • [24] A. Zaidi, S. Boucherit, M.A. Yallese, S. Belhadi, and M. Kaddeche. RSM modeling and multiobjective optimization of turning parameters for polyamide PA66 using PCA and PCA coupled with TOPSIS. MECHANIKA, 28(6):499–508, 2022. doi: 10.5755/j02.mech.30394.
  • [25] J. Paul Davim, F. Mata, V.N. Gaitonde, and S.R. Karnik. Machinability evaluation in unrein forced and reinforced PEEK composites using response surface models. Journal of Thermo plastic Composite Materials, 23(1):5–18, 2010. doi: 10.1177/0892705708093503.
  • [26] K. Safi, M.A. Yallese, S. Belhadi, T. Mabrouki, and A. Laouissi. Tool wear, 3D surface topography, and comparative analysis of GRA, MOORA, DEAR, and WASPAS optimization techniques in turning of cold work tool steel. International Journal of Advanced Manufacturing Technology, 121:701–721, 2022. doi: 10.1007/s00170-022-09326-6.
  • [27] M. Nouioua, A. Laouissi, V. Brahami, M.M. Blaoui, A. Hammoudi, and M.A. Yallese. Evaluation of: MOSSA, MOALO, MOVO and MOGWO algorithms in green machining to enhance the turning performances of X210Cr12 steel. International Journal of Advanced Manufacturing Technology, 120:2135–2150, 2022. doi: 10.1007/s00170-022-08897-8.
  • [28] R. Suresh, A.G. Joshi, and M. Manjaiah. Experimental investigation on tool wear in AISI H13 die steel turning using RSM and ANN methods. Arabian Journal for Science and Engineering, 46:2311–2325, 2021. doi: 10.1007/s13369-020-05038-9.
  • [29] B. Hamadi, M.A. Yallese, L. Boulanouar, A. Hammoudi, and M. Nouioua. Evaluation of the cutting performance of PVD, CVD and MTCVD carbide inserts in dry turning of AISI 4140 steel using RSM-based NAMDE optimization. Journal of the Brazilian SocIety of Mechanical Sciences and Engineering, 44:342, 2022. doi: 10.1007/s40430-022-03633-5.
  • [30] A. Hamdi, S.M. Merghache, and T. Aliouane. Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive Mechanical Engineering, 67(1):73–95, 2020. doi: 10.24425/ame.2020.131684.
  • [31] M. Mia and N.R. Dhar. Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arabian Journal for Science and Engineering, 43:1125–1136, 2018. doi: 10.1007/s13369-017-2754-1.
  • [32] P.B. Zaman and N.R. Dhar. Multi-objective optimization of double-jet MQL system parameters meant for enhancing the turning performance of Ti–6Al–4V Alloy. Arabian Journal for Science and Engineering, 45:9505–9526, 2020. doi: 10.1007/s13369-020-04806-x.
  • [33] N. Senthilkumar, T. Tamizharasan, and S. Gobikannan. Application of Response Surface Methodology and Firefly Algorithm for Optimizing Multiple Responses in Turning AISI 1045 Steel. Arabian Journal for Science and Engineering, 39:8015–8030, 2014. doi: 10.1007/s13369-014-1320-3.
  • [34] K. Noor, M.A. Siddiqui, and S.A. Iqbal. Multi-objective optimization of parameters in CNC turning of a hardened alloy steel roll by using response surface methodology. Arabian Journal for Science and Engineering, 48:3403–3423, 2023. doi: 10.1007/s13369-022-07117-5.
  • [35] M.N. Sultana and N.R. Dhar. Hybrid GRA-PCA and modified weighted TOPSIS coupled with Taguchi for multi-response process parameter optimization in turning AISI 1040 steel. Archive Mechanical Engineering, 68(1):23–49, 2021. doi: 10.24425/ame.2020.131707.
  • [36] K. Kumarand R.K. Verma. Measurement and evaluation of delamination factors and thrust force generation during drilling of multiwall carbon nanotube (MWCNT) modified polymer laminates. Archive Mechanical Engineering, 69(2):269–300, 2022. doi: 10.24425/ame.2022.140417.
  • [37] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
  • [38] M.S. Węglowski. Experimental study and response surface methodology for investigation of FSP process. Archive Mechanical Engineering, 61(4):539–552, 2014. doi: 10.2478/meceng-2014-0031.
  • [39] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and genetic algorithm. Archive Mechanical Engineering, 63(1):45–71,2016. doi: 10.1515/meceng-2016-0003.
  • [40] Y. Touggui, S. Belhadi, A. Uysal, M. Temmar, and M.A. Yallese. A comparative study on performance of cermet and coated carbide inserts in straight turning AISI 316L austenitic stainless steel. International Journal of Advanced Manufacturing Technology, 112:241–260, 2021. doi: 10.1007/s00170-020-06385-5.
  • [41] A. Laouissi, M.A. Yallese, A. Belbah, S. Belhadi, and A. Haddad. Investigation, modeling, and optimization of cutting parameters in turning of grey cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. International Journal of Advanced Manufacturing Technology, 101:523–548, 2019. doi: 10.1007/s00170-018-2931-8.
  • [42] A. Laouissi, M.M. Blaoui, H. Abderazek, M. Nouioua, and A. Bouchoucha. Heat treatment process study and ANN-GA based multi-response optimization of C45 steel mechanical properties. Metals and Materials International, 28:3087–3105, 2022. doi: 10.1007/s12540-022-01197-6.
  • [43] H. Ganesan and G. Mohankumar. Optimization of machining techniques in CNC turning centreusing genetic algorithm. Arabian Journal for Science and Engineering, 38:1529–1538, 2013. doi: 10.1007/s13369-013-0539-8.
  • [44] G. Özden, M.Ö. Öteyaka, and F.M. Cabrera. Modeling of cutting parameters in turning of PEEK composite using artificial neural networks and adaptive-neural fuzzy inference systems. Journal of Thermoplastic Composite Materials, 36(2):493–509, 2023. doi: 10.1177/08927057211013070.
Identyfikator YADDA
bwmeta1.element.baztech-e23d996f-bb94-4e3d-a0b8-88bf1ec8a48a