PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differentiation of random structure properties using wavelet analysis of backscattered ultrasound

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to find the differences between random media by analyzing the properties of the ultrasound signals backscattered from the inhomogeneities. A numerical model is used to generate two types of random media. The first has the randomness in scatterers’ positions and the second has the randomness in the size and acoustical properties of scatterers. The numerical model of wave scattering has been used to simulate the RF (radio frequency) signals caused by the incident pulse traveling as a plane wave. The markers of randomness type differences between the scattering media were obtained with the help of the spectral and wavelet analysis. The effect of differences in randomness type is more spectacular when the wavelet analysis is performed.
Czasopismo
Rocznik
Tom
Strony
121--128
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  • Belarussian State University, Kurchatova, 5, 220045 Minsk, Belarus
Bibliografia
  • [1] J. Mamou, M. L. Oelze, Quantitative Ultrasound in Soft Tissues, Springer Science & Business Media, 2013.
  • [2] J. Wójcik, N. Żołek and M. Lewandowski, Influence of transmission-reception characteristics of ultrasound transducers on statistics of echoes from nonhomogeneous media, In: Postępy Akustyki 2016, Polskie Towarzystwo Akustyczne, Oddział Warszawski, Warszawa, Poland, Vol.1, pp. 627–633, 2016.
  • [3] F. Destrempes, G. Clouttier, A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope, Ultrasound in Med. & Biol., vol. 36, pp. 1037—1051, 2010.
  • [4] J. Wójcik, J. Litniewski and A. Nowicki, Modeling and analysis of multiple scattering of acoustic waves in complex media: Application to the trabe cular bone, J. Acoust. Soc. Am. vol. 130 (4), pp. 1908—1918, 2011.
  • [5] P. Addison, The Illustrated Wavelet Transform Handbook, IoP, Bristol-Philadelphia, 2002.
  • [6] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia 1993.
  • [7] B. Gambin, O. Doubrovina Statistical properties of wavelet transform coefficients of backscattering signal from soft tissues and their phantoms, Hydroacoustics, V. 16, pp. 59– 66, 2013.
  • [8] O. Doubrovina, B. Gambin, E. Kruglenko, Temperature level and properties of wavelet approximations of backscattered ultrasound. Hydroacoustics, vol. 17, pp. 37–46, 2014.
  • [9] B. Gambin, O. Doubrovina, Wavelet analysis for temperature increase detection from acoustic backscattered signal. In: Complex Analysis and Potential Theory with Applications (T. Aliev Azerogly, A. Golberg, S.V. Rogosin Eds.). Cambridge Scientific Publishers, pp. 63–76.
  • [10] V. K. Sudarshan, M. R. Krishnan Mookiah, U. Rajendra Acharya, V. Chandran, F. Molinari, H. Fujita, K. Hoong Ng, Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review, Computers in Biology and Medicine vol. 69, pp. 97– 111, 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e23846e8-35cd-4b71-807a-29e20dbb9c52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.