PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of energy efficiency and dynamics during car acceleration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the authors focused on analyzing the energy efficiency and dynamics during car acceleration, featuring investigation of acceleration dynamics under various acceleration intensities. The tests were performed in the speed range between 45 km/h and 120 km/h, at a constant gear ratio. This enabled obtaining variable dynamic parameters of the acceleration process, ranging from about 0.1 to 1.4 m/s2, and recording variation in fuel consumption from 6.28 to 27.03 dm3/100km. The study focused on determining the relation between fuel consumption, energy efficiency and vehicle acceleration depending on the available drivetrain power. The relation between fuel consumption and vehicle acceleration was described by using the dynamic index. The proposed dynamic index takes into account the energy (from burned fuel) and vehicle acceleration intensity to obtain an objective metric for characterizing the acceleration process. The aforementioned index takes the form of the passenger car movement energy quality index and can be related to widely known physical properties, thus ensuring its universality. The index expresses the energy expenditure within the time needed to accelerate a vehicle weighing 1kg by a 1m distance. As opposed to other criteria that are applied to the assessment of passenger cars dynamics, the index shows a high determination coefficient R2 in excess of 0.99, and can be used as a universal metric to test other vehicle types.
Rocznik
Strony
art. no. 17
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
  • Opole University of Technology, Department of Vehicles, Faculty of Mechanical Engineering
  • Opole University of Technology, Department of Vehicles, Faculty of Mechanical Engineering
  • Opole University of Technology, Department of Vehicles, Faculty of Mechanical Engineering
  • Opole University of Technology, Department of Vehicles, Faculty of Mechanical Engineering
  • Opole University of Technology, Department of Vehicles, Faculty of Mechanical Engineering
  • Silesian University of Technology, Department of Road Transport, Faculty of Transport and Aviation Engineering
  • University of Warmia and Mazury in Olsztyn , Department of Mechatronics and Technical and IT Education, Faculty of Technical Science
Bibliografia
  • 1. Akcelik R, Biggs D C. Acceleration profile models for vehicles in road traffic. Transportation Science 1987; 21(1): 36–54. https://doi.org/10.1287/trsc.21.1.36
  • 2. Badin F, Le Berr F, Briki H et al. Evaluation of EVs energy consumption influencing factors: Driving conditions, auxiliaries use, driver’s aggressiveness. World Electric Vehicle Journal 2013; 6(1): 112–123. https://doi.org/10.3390/wevj6010112
  • 3. Berry M. The effect of driving style and vehicle performance on the real-world fuel consumption of US Light - Duty Vehicles. The effect of driving style and vehicle performance on the real-world fuel consumption of US Light -Duty Vehicles 2010. doi:10.1016/j.trd.2015.10.003.
  • 4. Bokare P S, Maurya A K. Acceleration-Deceleration Behaviour of Various Vehicle Types. Transportation Research Procedia 2017; 25: 4733–4749. https://doi.org/10.1016/j.trpro.2017.05.486
  • 5. Burgess S C, Choi J M J. A parametric study of the energy demands of car transportation: A case study of two competing commuter routes in the UK. Transportation Research Part D: Transport and Environment 2003; 8(1): 21–36.https://doi.org/10.1016/S1361-9209(02)00016-0
  • 6. Carlson R B, Lohse-Busch H, Duoba M, Shidore N. Drive cycle fuel consumption variability of plug-in hybrid electric vehicles due to aggressive driving. SAE Technical Papers, SAE International: 2009: 1–8. https://doi.org/10.4271/2009-01-1335
  • 7. Cipollone R, Di Battista D, Mauriello M. Effects of oil warm up acceleration on the fuel consumption of reciprocating internal combustion engines. Energy Procedia 2015; 82(February 2016): 1–8. https://doi.org/10.1016/j.egypro.2015.11.870
  • 8. Davari M M, Jerrelind J, Stensson Trigell A. Energy efficiency analyses of a vehicle in modal and transient driving cycles including longitudinal and vertical dynamics. Transportation Research Part D: Transport and Environment 2017; 53: 263–275. https://doi.org/10.1016/j.trd.2017.04.019
  • 9. Duoba M, Lohse-Busch H, Bohn T. Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles. EVS21, Monaco, 2004.
  • 10. Eisele W L, Turner S M, Benz R J. Using Acceleration Characteristics in Air Quality and Energy Consumption Analyses Texas Transportation Institute The Texas A & M University System College Station , Texas 77843-3135 Southwest Region University Transportation Center Texas Transportation In. 1996.
  • 11. Ferreira H, Rodrigues C M, Pinho C. Consumption and CO 2 Emissions : An Energy-E ffi ciency Rating Methodology. Energies 2019; 13(119): 2–27. https://doi.org/10.3390/en13010119
  • 12. Ferreira H, Rodrigues C M, Pinho C. Impact of road geometry on vehicle energy consumption and CO2 emissions: An energy-efficiency rating methodology. Energies 2019. doi:10.3390/en13010119.
  • 13. Galvin R. Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers. Transportation Research Part D: Transport and Environment 2017; 53: 234–248. https://doi.org/10.1016/j.trd.2017.04.020
  • 14. Graba M, Mamala J, Bieniek A, Sroka Z. Impact of the acceleration intensity of a passenger car in a road test on energy consumption. Energy 2021; 226: 120429. https://doi.org/10.1016/j.energy.2021.120429
  • 15. He H, Cao J, Cui X. Energy optimization of electric vehicle’s acceleration process based on reinforcement learning. Journal of Cleaner Production 2020; 248(Iceee): 1–5. https://doi.org/10.1016/j.jclepro.2019.119302
  • 16. Hu K, Wu J, Schwanen T. Differences in energy consumption in electric vehicles: An exploratory real-world study in Beijing. Journal of Advanced Transportation 2017. doi:10.1155/2017/4695975.
  • 17. Hyodo T. Estimation of Energy Consumption Equation for Electric Vehicle and Its Implementation. 13th Worl Conference on Transport Research 2013; (Table 2): 1–12.
  • 18. Jantos J, Korniak J, Mamala J, Siłka W. Driveability and fuel consumption improvement through integrated fuzzy logic control of drivetrain with spark ignition engine and continuously. Fisita World Automotive Congress 2004; F2004F414: 1–8.
  • 19. Lee J, Nelson D J, Lohse-Busch H. Vehicle inertia impact on fuel consumption of conventional and hybrid electric vehicles using acceleration and coast driving strategy. SAE Technical Papers 2009. doi:10.4271/2009-01-1322.
  • 20. Lu D, Ouyang M. Torque-based optimal acceleration control for electric vehicle. Chinese Journal of Mechanical Engineering (English Edition) 2014; 27(2): 319–330. https://doi.org/10.3901/CJME.2014.02.319
  • 21. Mamala J. Compensation of the lack of driving force in the acceleration process of a passenger car (Kompensacja niedostatku siły napędowej w procesie rozpędzania samochodu osobowego). Opole University of Technology: 2011.
  • 22. Mamala J, Graba M, Bieniek A et al. Study of energy consumption of a hybrid vehicle in real-world conditions. Eksploatacja i Niezawodnosc 2021; 23(4): 636–645. https://doi.org/10.17531/ein.2021.4.6
  • 23. Mamala J, Graba M, Praznowski K, Hennek K. Control of the effective pressure in the cylinder of a Spark-Ignition engine by electromagnetic valve actuator. SAE Technical Papers, SAE International: 2019. doi:10.4271/2019-01-1201.
  • 24. Miri I, Fotouhi A, Ewin N. Electric vehicle energy consumption modelling and estimation—A case study. International Journal of Energy Research 2021; 45(1): 501–520. https://doi.org/10.1002/er.5700
  • 25. Siłka W. Energy consumption of car movement. Energochłonność ruchu samochodu. WNT: 1997.
  • 26. Siłka W. Tractive efficiency of a vehicle at variable speed. Combustion Engines 2011; 144(1): 56–62. https://doi.org/10.19206/CE-117123
  • 27. Sitnik L J, Ivanov Z D, Sroka Z J. Energy demand assessment for long term operation of hybrid electric vehicles. IOP Conference Series: Materials Science and Engineering 2020. doi:10.1088/1757-899X/1002/1/012026.
  • 28. Thomas J, Huff S, West B, Chambon P. Fuel Consumption Sensitivity of Conventional and Hybrid Electric Light-Duty Gasoline Vehicles to Driving Style. SAE International Journal of Fuels and Lubricants 2017. doi:10.4271/2017-01-9379.
  • 29. Uemura T, Kashiwabara Y, Kawanuma D, Tomii T. Accuracy evaluation by GPS data correction for the EV energy consumption database. ACM International Conference Proceeding Series 2016; 28-November-2016: 213–218. https://doi.org/10.1145/3004010.3004044
  • 30. Wang J, Besselink I, Nijmeijer H. Battery electric vehicle energy consumption prediction for a trip based on route information. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2018; 232(11): 1528–1542. https://doi.org/10.1177/0954407017729938
  • 31. Wang S, Liu Y, Cairano-Gilfedder C Di et al. Reliability Analysis for Automobile Engines: Conditional Inference Trees. Procedia CIRP 2018; 72: 1392–1397. https://doi.org/10.1016/j.procir.2018.03.065
  • 32. Weiss M, Cloos K C, Helmers E. Energy efficiency trade-offs in small to large electric vehicles. Environmental Sciences Europe 2020. doi:10.1186/s12302-020-00307-8.
  • 33. Yao E, Yang Z, Song Y, Zuo T. Comparison of electric vehicle’s energy consumption factors for different road types. Discrete Dynamics in Nature and Society 2013. doi:10.1155/2013/328757.
  • 34. Zacharof N G, Fontaras G. Review of in use factors affecting the fuel consumption and CO2 emissions of passenger cars. EUR 27819 EN, 2016. doi:10.2790/140640.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e237a6bd-e37e-42fa-8030-d52a7490eb6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.