PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semi-analytical scheme with its stability analysis for solving the fractional-order predator-prey equations by using Laplace-VIM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article’s goal is to implement a semi-analytical technique named, the Laplace variational iteration method (LVIM), which is the combination of VIM and Laplace transform method. Although both the Laplace transform method and VIM cannot be applied to some nonlinear fractional differential equations (FDEs) individually, this combination will give a fast-convergent solution to the problem under study. The proposed scheme is used to numerically solve a biodynamic system called the Lotka-Volterra system, i.e. Predator-Prey Equations (PPEs). The system of FDEs can be used to represent this scenario, as well as the Caputo-Fabrizio fractional derivative will be used throughout the study. By assessing the residual error function, we can confirm that the given procedure is effective and accurate. The outcomes demonstrate that the technique used is an effective tool for simulating such models.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Islamic University of Madinah Medina, KSA
  • Department of Mathematics, Faculty of Science, Cairo University Giza, Egypt
  • Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh, KSA
  • Department of Mathematics, Faculty of Science, Benha University Benha, Egypt
Bibliografia
  • [1] Podlubny, I. (1999). Fractional Differential Equations (Vol. 198). Elsevier.
  • [2] Adel, M., Khader, M.M., & Algelany, S. (2023). High-dimensional chaotic Lorenz system: Numerical treated using Changhee polynomials of the Appell type. Fractal and Fractional, 7(5), 1-16.
  • [3] Alquran, M. (2023). Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Romanian J. of Physics, 68(4), 106, 1-22.
  • [4] Adel, M., Sweilam, N.H., Khader, M.M., Ahmed, S.M., Ahmad, H., & Botmart, T. (2022). Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics, 39, 105682. DOI: 10.1016/j.rinp.2022.105682.
  • [5] Mahdy, A.M.S. (2022). A numerical method for solving the nonlinear equations of Emden-Fowler models. Journal of Ocean Engineering and Science, 12, 15-25.
  • [6] Ali, M., Alquran, M., & Jaradat, I. (2019). Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell-Whitehead-Segel system. Advances in Difference Equations, 70, 1-9.
  • [7] Abdulhameed, M., Vieru, D., & Roslan, R. (2017). Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Computers & Mathematics with Applications, 74(10), 2503-2519. DOI: 10.1016/j.camwa.2017.07.040
  • [8] Caputo, M., & Fabrizio, A. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications, 1(2), 1-13.
  • [9] Aguilar, J.G. (2017). Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A: Statistical Mechanics and its Applications, 465, 562-572.
  • [10] Mahdy, A.M.S. (2023). Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative. Mathematical Methods in the Applied Science, 15, 1-18.
  • [11] Khader, M.M., Sweilam, N.H., & Mahdy, A.M.S. (2015). Two computational algorithms for the numerical solution for system of fractional differential equations. Arab Journal of Mathematical Sciences, 21(1), 39-52.
  • [12] Sweilam, N.H., & Al-Bar, F. (2007). Variational iteration method for coupled nonlinear Schrodinger equations. Computers and Mathematics with Applications, 54(8), 993-999.
  • [13] Alquran, M., Alsukhour, M., Ali, M., & Jaradat, I. (2021). Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems. Nonlinear Engineering, 10, 282-292.
  • [14] Al-deiakeh, R., Ali, M., Alquran, M., Sulaiman, T.A., Momani, S., & Al-Smadi, M. (2022). On finding closed-form solutions to some nonlinear fractional systems via the combination of the multi-Laplace transform and the Adomian decomposition method. Romanian Reports in Physics, 74(111), 1-17.
  • [15] Iqbal, J., Shabbir, K., & Guran, L. (2021). Semi-analytical solutions of some nonlinear-time fractional models using variational iteration Laplace transform method. Journal of Function Spaces, 2021, 8345682.
  • [16] Karakoc, S.G., & Ali, K.K. (2021). Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation. Tbilisi Mathematical J., 14(2), 33-50.
  • [17] Dong, Y., Tang, X., & Yuan, Y. (2020). Principled reward shaping for reinforcement learning via Lyapunov stability theory. Neurocomputing, 393, 83-90.
  • [18] Li, L., & Chen, W. (2020). Exponential stability analysis of quaternion-valued neural networks with proportional delays and linear threshold neurons: Continuous-time and discrete-time cases. Neurocomputing, 381, 152-166. DOI: 10.1016/j.neucom.2019.09.051.
  • [19] Samardzija, N., & Greller, L.D. (1998). Explosive route to chaos through a fractal torus in a generalized Lotka-Volterra model. Bulletin of Mathematical Biology, 50(5), 465-491.
  • [20] He, J.H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(2), 57-68.
  • [21] Iqbal, J., Shabbir, K., & Guran, L. (2022). Stability analysis and computational interpretation of an effective semi analytical scheme for fractional non-linear PDEs. Fractal and Fractional, 6, 1-10.
  • [22] Jafari, H., & Alipoor, A. (2011). A new method for calculating the general Lagrange multiplier in the variational iteration method. Numerical Methods for PDEs, 27(4), 996-1001.
  • [23] El-Hawary, H.M., Salim, M.S., & Hussien, H.S. (2003). Ultraspherical integral method for optimal control problems governed by ODEs. Journal of Global Optimization, 25(3), 283-303
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2369687-d549-4937-8561-3bf5bc1502ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.