PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and computing of stress and strain distribution in UHMW polyethylene elements of chosen artificial human joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to present numerical strength analysis of the virtual knee and hip joints for the most popular tribological pairs used in prosthetic arthroplasty based on the Finite Elements Method. FEM makes it possible to calculate the stress in particular elements of the tested models. The research was dedicated to elucidate abrasive wear mechanisms during surface grinding of a polyethylene UHMW and a metal elements of endoprostheses. Strong adhesion was found between the abrasives and workpieces, which might be attributed to the chemical bonding between the abrasives and workpieces in synovial liquid. Therefore, the wear of UHMWPE is both chemical and physical. Abrasive wear effect, as a result of the abrasive wear process, is associated with material loss of the element surface layer due to the separation of particles by fissuring, stretching, or micro-cutting.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Al. Armii Krajowej 21, 42-217, Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Al. Armii Krajowej 21, 42-217, Częstochowa, Poland
Bibliografia
  • 1. Scifert, Ch.F., Brown, T. & Lipman, J. (1999). Finite element analysis of a novel design approach to resisting total hip dislocation, Clin. Biomech. 14, pp. 697–703.
  • 2. Ryniewicz, A.M. & Madej, T. (2002). Analiza naprężeń i przemieszczeń w strefie roboczej endoprotezy stawu biodrowego, Mech. Med. 6, pp. 127–134.
  • 3. El-Shiekh, F. & Hussam, E.D. (2002). Finite element simulation of hip joint replacement under static and dynamic loading, PhD thesis, Dublin City University.
  • 4. John, A. & Orantek, P. (2006). Symulacja oddziaływań dynamicznych w stawie biodrowym ze sztuczną panewką, Model. Inż. 32, pp. 211–218.
  • 5. Madej, T. & Ryniewicz, A. (2013). Modelowanie i symulacje wytrzymałościowe w stawie biodrowym zaopatrzonym protezą nakładkową jako procedura diagnostyczna przed zabiegiem kapoplastyki, Tribologia 2–2013.
  • 6. Gierzyńska-Dolna, M. (1996). Odporność na zużycie materiałów stosowanych na endoprotezy, Mech. Medyc. Rzeszów, p. 131–141.
  • 7. Polyakov, A., Pakhaliuk, V., Kalinin, M. & Kramar, V. (2015). System Analysis and Synthesis of Total Hip Joint Endoprosthesis, Proc. Engin. 100 pp. 530–538. DOI: 10.1016/j.proeng.2015.01.400.
  • 8. Xu, X., Luo, D., Guo, Ch. & Rong, Q. (2017). Acustom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis, Medic. Engin. & Phys. 46, August 2017, Pages 1–11. DOI: 10.1016/j.medengphy.2017.04.012.
  • 9. Eckert, J., Jaeger, S., Klotz, M., Schwarze, M. & Bitsch, R. (2018). Can intraoperative measurement of bone quality help in decision making for cementless unicompartmental knee arthroplasty? The Knee 25, Issue 4, August 2018, Pages 609–616 DOI:10.1016/j.knee.2018.03.013.
  • 10. Jahnkea, A., Ulloaa, C., Seegera, J. & Rickert, M. (2018). Analysis of the elastic bending characteristics of cementless short hip stems considering the valgus alignment of the prosthetic stem, Clin. Biomech. 52 (2018) 49–56. DOI: 10.1016/j.clinbiomech.2018.01.006.
  • 11. Dathe, H., Gezzi, R., Fiedler, Ch., Kubein-Meesenburg, D. & Nägerl, H. (2016) The description of the human knee as four-bar linkage, Acta Bioengin. Biomech. 18, 4. DOI: 10.5277/ABB-00464-2015-03.
  • 12. Nagerl, H., Dathe, H., Fiedler, Ch., Gowers, L., Kirsch, S., Kubein-Meesenburg, D., Dumont, C. & Wachowski, M.M. (2015) The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00119-2014-02.
  • 13. Mielińska, A., Czamara, A., Szuba, Ł. & Będziński, R. (2015) Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00208-2014-04.
  • 14. Gierzyńska-Dolna, M. (2002). Biotribology. Częstochowa. Publishing of Czestochowa University of Technology.
  • 15. Gierzyńska-Dolna, M. & Kubacki, J. (1999). Specifi city of wear of hip and knee endoprostheses. Materials of II Symposium of Engineering Orthopedics and Protetics, IOP’99 Białystok, 45–51.
  • 16. Olinski, M., Gronowicz, A., Handke, A. & Ceccarelli, M. (2016) Design and characterization of a novel knee articulation mechanism. Int. J. Appl. Mech. Engin. 21, 3. DOI: 10.1515/ijame-2016-0037
  • 17. Ciszkiewicz, A. & Knapczyk, J. (2014) Parameters estimation for the spherical model of the human knee joint using vector method. Int. J. Appl. Mech Engin. 19, 3. DOI: 10.2478/ijame-2014-0035.
  • 18. Hajduk, G., Nowak, K., Sobota, G., Kusz, D., Kopeć, K., Błaszczak, E., Cieliński, Ł. & Bacik, B. (2016). Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posteriorsubstituting design. Acta Bioengin. Biomech. 18, 3. DOI: 10.5277/ABB-00405-2015-03.
  • 19. Melzer, P., Głowacki, M., Głowacki, J. & Misterska, E. (2014) Isokinetic evaluation of knee joint flexor and extensor muscles after tibial eminence fractures, Acta Bioengin. Biomech.16, 3. DOI: 10.5277/abb140313.
  • 20. https://www.linkorthopaedics.de, access 29.04.2019.
  • 21. Gierzyńska-Dolna, M. (1997). Tribological problems in natural and artificial human joint. Biomater. Engin. 2/1997.
  • 22. Long, M. & Rack H.J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials 19 (1998) 1621–1639.
  • 23. Zienkiewicz, O.C. (1972). Finite Elements Method. Publishing Arkady.
  • 24. Knapczyk, J. & Góra-Maniowska, M. (2017) Displacement analysis of the human knee joint based on the spatial kinematic model by using vector method, Acta Mech. Automat. 11, 4. DOI: 10.1515/ama-2017-0050.
  • 25. https://www.zimmerbiomet.com, access 16.04.2018.
  • 26. Będziński, R. (1997) Biomechanika inżynierska, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 27. Marciniak, J. (2002) Biomaterials, Gliwice, Publishing of Silesian University of Technology.
  • 28. Ratner, B.D. (2004). Biomaterials Science, An Introduction to Materials in Medicine 2nd Edittion, Elsevier Academic Press, eBook ISBN: 9780080470368.
  • 29. Bednarek, A., Zakrzewski, P. & Parol, W. (2008). Proteza nasadowa (modularna) stawu biodrowego Metha – założenia biomechaniczne, wczesne wyniki kliniczne, IV Międzynarodowe Sympozjum Koksartoza, 8 – 10.05.2008, Katowice.
  • 30. Kumar, A., Bijwe, J. & Sharma, S. (2017). Hard metal nitrides: Role in enhancing the abrasive wear resistance of UHMWPE, Wear 378–379, Pages 35–42. DOI: 10.1016/j.wear.2017.02.010.
  • 31. Cenna, A.A., Allen, S. , Page, N.W & Dastoor, P. (2003). Modelling the three-body abrasive wear of UHMWPE particle reinforced composites, Wear 254, 5–6, Pages 581–588. DOI: 10.1016/S0043-1648(03)00067-X.
  • 32. Zai, W. , Wong, M.H. & Man, H.C. (2019). Improving the wear and corrosion resistance of CoCrMo-UHMWPE articulating surfaces in the presence of an electrolyte, Appl. Surf. Sci.464, 404–411. DOI: 10.1016/j.apsusc.2018.09.027.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e234234d-e8e5-4c9d-89fc-045589678231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.