PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thin films of copper phthalocyanine deposited by solution processing methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we show and discuss the surface structure picture of copper phthalocyanine (CuPc) thin films deposited from trifluoroacetic acid (TFA) solvent onto silicon substrates at ambient conditions by four solution processing methods, namely drop-casting, dip-coating, spin-casting and spray-coating. The CuPc films were studied by AFM, as the main technique, and complemented by micro-Raman spectroscopy. Essentially, such thin films consist of CuPc molecular nanoribbons of a fixed ~1 nm thickness. CuPc molecules are arranged in an in-plane direction and formed in stacks under a defined tilt angle with respect to the substrate surface (monolayer) or underlying CuPc layer (multilayer). The film morphology takes various forms depending on the solution concentration, number of layers, and the deposition method. For instance, the morphology varies from very wide (~600 nm) but flat (~1 nm) ribbons for films prepared by dip-coating to crystallized rod-like features (multi-layered ribbons) when obtained by spray-coating. The factors studied in this paper should be taken into consideration in designing and controlling the criteria for rigorous CuPc film architecture.
Wydawca
Rocznik
Strony
79--90
Opis fizyczny
Bibliogr. 66 poz., tab., rys.
Twórcy
  • Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60965 Poznan, Poland
  • Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam, Germany
  • Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60965 Poznan, Poland
Bibliografia
  • [1] SWALEN J.D., ALLARA D.L., ANDRADE J.D., CHANDROSS E.A., GAROFF S., ISRAELACHVILI J., MCCARTHY T.J., MURRAY R., PEASE R.F., RABOLT J.F., WYNNE K.J., YU H., Langmuir, 3 (1987), 932.
  • [2] SESHAN K., Handbook of Thin Film Deposition: Techniques, Processes, and Technologies, 3rd Ed., Elsevier, 2012.
  • [3] MARTIN P.M. (Ed.), Handbook of Deposition Technologies for Films and Coatings, Elsevier, 2010.
  • [4] MITZI D.B. (Ed.), Solution Processing of Inorganic Materials, Wiley, 2008.
  • [5] YANG Y., LI G. (Ed.), Progress in High-Efficient Solution Process Organic Photovoltaic Devices: Fundamentals, Materials, Devices and Fabrication, Springer, 2015.
  • [6] GOJZEWSKI H., MAKOWSKI M., HASHIM A., KOPCANSKY P., TOMORI Z., TIMKO M., Scanning, 34 (2012), 159.
  • [7] MORRIN A., WILBEER F., NGAMNA O., MOULTON S.E., KILLARD A.J., WALLACE G.G., SMYTH M.R., Electrochem. Commun., 7 (2005), 317.
  • [8] CHOI H., STATHATOS E., DIONYSIOU D.D., Appl. Catal. B, 63 (2006), 60.
  • [9] CALDEIRA L., VASCONCELOS D.C.L., NUNES E.H.M., COSTA V.C., MUSSE A.P., HATIMONDI S.A., NASCIMENTO J.F., GRAVA W., VASCONCELOS W.L., Ceram. Int., 38 (2012), 3251.
  • [10] BORMASHENKO E., POGREB R., STANEVSKY O., BORMASHENKO Y., STEIN T., GAISIN V.Z., COHEN R., GENDELMAN O.V., Macromol. Mater. Eng., 290 (2005), 114.
  • [11] CHANG D., YOON D., RO M., HWANG I., PARK I., SHIN D., Jpn. J. Appl. Phys., 42 (2003), 754.
  • [12] LINDGREN L.J., ZHANG F., ANDERSSON M., BARRAU S., HELLSTROM S., MAMMON W., PERZPN E., INGANAES O., ANDERSSON M.R., Chem. Mater., 21 (2009), 3491.
  • [13] NOHRIA R., KHILLAN R.K., SU Y., DIKSHIT R., LVOV Y., VARAHRAMYAN K., Sensor. Actuator. B, 114 (2006), 218.
  • [14] SIRRINGHAUS H., Adv. Mater., 17 (2005), 2411.
  • [15] CHANG J.F., SUN B., BREIBY D.W., NIELSEN M.M., SOELLING T.I., GILES M., MCCULLOCH I., SIRRINGHAUS H., Chem. Mater., 16 (2004), 4772.
  • [16] SHI Y., LIU J., YANG Y., J. Appl. Phys., 87 (2000), 4254.
  • [17] PU Y.J., HIGASHIDATE M., NAKAYAMA K.I., KIDO J., J. Mater. Chem., 18 (2008), 4183.
  • [18] KOBAYASHI H., KANBE S., SEKI S., KIGCHI H., KIMURA M., YUDASAKA I., MIYASHITA S., SHIMODA T., TOWNS C.R., BURROUGHES J.H., FRIEND R.H., Synth. Met., 111 (2000), 125.
  • [19] GRAY J.E., LUAN B., J. Alloy. Compd., 336 (2002), 88.
  • [20] WU W., WANG X., LIU X., ZHOU F., ACS Appl. Mater. Int., 1 (2009), 1656.
  • [21] KROGMAN K.C., LOWERY J.L., ZACHARIA N.S., RUTLEDGE G.C., HAMMOND P.T., Nature Mater., 8 (2009), 512.
  • [22] MEN X., ZHANG Z., YANG J., ZHU X., WANG K., JIANG W., New J. Chem., 35 (2011), 881.
  • [23] JAFARI S.M., ASSADPOOR E., BHANDARI B., HE Y., Food Res. Int., 41 (2008), 172.
  • [24] ALAMILLA-BELTRAN L., CHANONA-PEREZ J.J., JIMENEZ-APARICIO A.R., GUTIEREZ-LOPEZ G.F., J. Food Eng., 67 (2005), 179.
  • [25] GIROTTO C., RAND B.P., GENOE J., HEREMANS P., Sol. Energ. Mat. Sol. C., 93 (2009), 454.
  • [26] WOLZ A., ZILS S., MICHEL M., ROTH C., J. Power Sources, 195 (2010), 8162.
  • [27] RAJESHMON V.G., KARTHA C.S., VIJAYAKUMAR K.P., SANJEEVIRAJA C., ABE T., KASHIWABA Y., Sol. Energ., 85 (2011), 249.
  • [28] KADISH K.M., SMITH K.M., GILLARD R. (Ed.), The Porphyrin Handbook, Academic Press, San Diego, 2000.
  • [29] YANG F., FORREST S.R., ACS Nano, 2 (2008), 1022.
  • [30] HUANG Y.S., JOU J.H., WENG W.K., LIU J.M., Appl. Phys. Lett., 80 (2002), 2782.
  • [31] YE R., BABA M., OISHI Y., MORI K., SUZUKI K., Appl. Phys. Lett., 86 (2005), 1.
  • [32] INABE T., TAJIMA H., Chem. Rev., 104 (2004), 5503.
  • [33] PEUMANS P., FORREST S.R., Appl. Phys. Lett., 79 (2001), 126.
  • [34] TANG Q., LI H., HE M., HU W., LIU C., CHEN K., WANG C., LIU Y., ZHU D., Adv. Mater., 18 (2006), 65.
  • [35] KUMAWAT L.K., MERGU N., SINGH A.K., GUPTA V.K., Sensor. Actuator. B, 212 (2015), 389.
  • [36] GOMEZ DE ARCO L., ZHANG Y., SCHLENKER C.W., RYU K., THOMPSON M.E., ZHOU C., ACS Nano, 4 (2010), 2865.
  • [37] JHA A., GHORAI U.K., BANERJEE D., MUKHERJEE S., CHATTOPADHYAY K.K., RSC Adv., 3 (2013), 1227.
  • [38] CHUNDER A., PAL T., KHONDAKER S.I., ZHAI L., J. Phys. Chem. C, 114 (2010), 15129.
  • [39] SZYBOWICZ M., BALA W., FABISIAK K., PAPROCKI K., DROZDOWSKI M., J. Mater. Sci., 46 (2011), 6589.
  • [40] SZYBOWICZ M., RUNKA T., DROZDOWSKI M., BALA W., GRODZICKI A., PISZCZEK P., BRATKOWSKI A., J. Mol. Struct., 704 (2004), 107.
  • [41] HUANG H., CHEN W., CHEN S., QI D.C., GAO X.Y., WEE A.T.S., Appl. Phys. Lett., 94 (2009), 163304.
  • [42] BOBISCH C., WAGNER T., BANNANI A., MOELLER R., J. Chem. Phys., 119 (2003), 9804.
  • [43] KOMINO T., MATSUDA M., TAJIMA H., Thin Solid Films, 518 (2009), 688.
  • [44] GHANI F., BOCHUKOV I., FOSTIROPOULOS K., RIEGLER H., Thin Solid Films, 525 (2012), 177.
  • [45] GHANI F., GOJZEWSKI H., RIEGLER H., Appl. Surf. Sci., 351 (2015), 969.
  • [46] AFIFY H.A., GADALLAH A.S., EL-NAHASS M.M., ATTA KHEDR M., J. Mol. Struct., 1098 (2015), 161.
  • [47] LIN W.K., SU S.H., LIU C.C., YOKOYAMA M., Jpn. J. Appl. Phys., 53 (2014), 11RB04.
  • [48] GHANI F., KRISTEN J., RIEGLER H., J. Chem. Eng. Data, 57 (2012), 439.
  • [49] GROSSO D., J. Mater. Chem., 21 (2011), 17033.
  • [50] DOBRE M., BOLLE L., Exp. Therm. Fluid Sci., 26 (2002), 205.
  • [51] GOJZEWSKI H., RICHTER A., WROBEL D., APOSTOLUK A., SIEJAK P., RAIMOND P., Surf. Sci., 603 (2009), 237.
  • [52] SZYBOWICZ M., BALA W., DUEMECKE S., FABISIAK K., PAPROCKI K., DROZDOWSKI M., Thin Solid Films, 520 (2011), 623.
  • [53] HOSHINO A., TAKENAKA Y., MIYAJI H., Acta Cryst. B, 59 (2003), 393.
  • [54] DEEGAN R.D., BAKAJIN O., DUPONT T.F., HUBER G., NAGEL S.R., WITTEN T.A., Nature, 389 (1997), 827.
  • [55] GHANI F., Max Planck Institute of Colloid and Interfaces, Potsdam, 2012.
  • [56] BRINKER C.J., FRYE G.C., HURD A.J., ASHLEY C.S., Thin Solid Films, 201 (1991), 97.
  • [57] GUENES S., NEUGEBAUER H., SARICIFTCI N.S., Chem. Rev., 107 (2007), 1324.
  • [58] BRABEC C.J., DURRANT J.R., MRS Bull., 33 (2008), 670.
  • [59] SULLIVAN P., JONES T.S., FERGUSON A.J., HEUTZ S., Appl. Phys. Lett., 91 (2007), 233114.
  • [60] RAND B.P., CHEYNS D., VASSEUR K., GIEBINK N.C., MOTHY S., YI Y., COROPCEANU V., BELJONNE D., CORNIL J., BRÉDAS J.L., GENOE J., Adv. Funct. Mater., 22 (2012), 2987.
  • [61] CHEN T.L., CHEN J.J.A., CATANE L., MA B., Org. Electron., 12 (2011), 1126.
  • [62] SCHUBERT D.W., DUNKEL T., Mater. Res. Innov., 7 (2003), 314.
  • [63] KARPITSCHKA S., WEBER C.M., RIEGLER H., Chem. Eng. Sci., 129 (2015), 243.
  • [64] MOKARIAN-TABARI P., GEOGHEGAN M., HOWSE J.R., HERIOT S.Y., THOMPSON R.L., JONES R.A.L., Eur. Phys. J. E, 33 (2010), 283.
  • [65] GAFFO L., CORDEIRO M.R., FREITAS A.R., MOREIRA W.C., GIROTTO E.M., ZUCOLOTTO V., J. Mater. Sci., 45 (2010), 1366.
  • [66] TACKLEY D.R., DENT G., SMITH W.E., Phys. Chem. Chem. Phys., 3 (2001), 1419.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2329592-7869-4fa1-8828-9aeb620b6f87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.