Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Warp-Knitted Fabric Defect Segmentation Based on Non-Subsampled Wavelet-Based Contourlet Transform

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In this paper, a non-subsampled wavelet-based contourlet transform (NWCT) is applied in warp-knitted fabric defect segmentation. Compared with the traditional contourlet transform, wavelet transform takes the place of Laplacian pyramid in NWCT and the directional filter bank is non-subsampled. The wavelet transform with improved wavelet threshold is put to use, and the original fabric image can be decomposed into low-frequency approximate coefficient A and high-frequency detail coefficients V, H, and D. The high-frequency detail coefficients are processed by the non-subsampled directional filter bank to get directional sub-band coefficients. Afterward, the effective sub-band coefficients based on regional energy are chosen to reconstruct V, H, and D. And the reconstructed fabric image will be achieved by inverse non-subsampled wavelet-based contourlet transform. The adaptive threshold method and morphological processing are used to obtain the legible defect profile. The experiment demonstrates that NWCT can achieve the positive segmentation regarding the common defects, such as broken warp, width barrier, and oil, and has excellent performance on these directional defects and regional defects. It is acknowledged that NWCT will provide a new way to detect warp-knitted fabric defects automatically.
Opis fizyczny
Bibliogr. 30 poz.
  • Engineering Research Center for Knitting Technology, Jiangnan University , Jiangsu, Wuxi, 214122, China
  • Engineering Research Center for Knitting Technology, Jiangnan University , Jiangsu, Wuxi, 214122, China
  • Engineering Research Center for Knitting Technology, Jiangnan University , Jiangsu, Wuxi, 214122, China
  • [1] Ngan Henry Y.T., Pang Grantham K.H., Yung Nelson H.C. (2011). Automated fabric defect detection-A review. Image and Vision Computing, 29, 442-458.
  • [2] Shimizu Y. (2000). Expert system to inspect fabric defects by pattern recognition. SeniGakkaishi, 46(1), 460-469.
  • [3] Tsai I.S, Lin C.H, Lin J.J. (1995). Applying an Artificial Neural Network to Pattern Recognition in Fabric Defects. Textile Research Journal, 65(3), 123-130.
  • [4] Haralick R.M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804.
  • [5] Ozdemir S., Ercil A. (1996). Markov random fields and Karhunen-Loeve transforms for defect inspection of textile products. Emerging Technologies and Factory Automation, EFTA ‘96. Proceedings. 1996 IEEE Conference on IEEE, 697-703.
  • [6] Cohen F.S., Fan Z., Attali S. (1991). Automatic inspection of textile fabrics using textural models. Patter Analysis and Machine Intelligence, 13(8), 803-808.
  • [7] Castellini C., Francini F., Longobardi G., et al. (1996). Online textile quality control using optical Fourier transforms. Optics & Lasers in Engineering, 24(1), 19-32.
  • [8] Chan C-H., Pang Grantham K.H. (2000). Fabric defect detection by Fourier analysis. Industry Applications, 36(5), 1267-1276.
  • [9] Sansoni P., Tiribilli B. (1996). Weaving defect detection by Fourier imaging. Proceedings of SPIE - The International Society for Optical Engineering, 2786, 9-18.
  • [10] Escofet J., Navarro R., Millán M.S., et al. (1996). Detection of local defects in textile webs using Gabor filters. Vision Systems New Image Processing Techniques, 2785(8), 163-170.
  • [11] Kumar A., Pang Grantham K.H. (2002). Defect detection in textured materials using Gabor filters. Industry Applications, 38(2), 425-440.
  • [12] Yuan S., Zheng T. (2004). Fabric defects automatic detection using Gabor filters. Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on. IEEE, 4, 3378-3380
  • [13] Tsai D.M., Bo H. (2001). Automatic surface inspection using wavelet reconstruction. Pattern Recognition, 34(6), 1285-1305.
  • [14] Tsai D.M, Chiang C.H. (2003). Automatic band selection for wavelet reconstruction in the application of defect detection. Image and Vision Computing, 21(5), 413-431.
  • [15] Yang X., Pang G., Yung N. (2004). Discriminative training approaches to fabric defect classification based on wavelet transform. Pattern Recognition, 37(5), 889-899.
  • [16] Do M.N, Vetterli M. (2003). Contourlets. Studies in Computational Mathematics, 10, 83-105.
  • [17] Do M.N, Vetterli M. (2003). Framing pyramids. Signal Processing, 51(9), 2329-2342.
  • [18] Do M.N, Vetterli M. (2005). The Contourlet transform: An efficient directional multiresolution image representation. Image Processing, 14(12), 2091-2106.
  • [19] Bamberger R.H, Smith M.J.T. (1992). A filter bank for the directional decomposition of images: theory and design. Signal Processing, 40(4), 882-893.
  • [20] Dou J., Li J. (2012). Optimal image-fusion method based on nonsubsampled contourlet transform. Optical Engineering, 51(10).
  • [21] Park S., Smith M.J.T, Mersereau R.M. (2004). Improved structures of maximally decimated directional filter banks for spatial image analysis. Image Processing, 13(11), 1424-1431.
  • [22] Hong P.S, Smith M.J.T. (2002). An octave-band family of nonredundant directional filter bank. Acoustics, Speech, and Signal Processing, 5, 1165-1168.
  • [23] Mallat S., Zhong S. (1992). Characterization of signals from multiscale edges. Pattern Analysis & Machine Intelligence, 14(7), 710-732.
  • [24] Mallat S., Hwang W.L. (1992). Singularity detection and processing with wavelets. Information Theory, 38(3): 617-643.
  • [25] Gonzalez R.C., Woods R.E. (2010). Digital Image Process, Third Edition. Pearson Education, 483-543.
  • [26] Eslami R., Radha H. (2005). New image transforms using hybrid wavelets and directional filter banks: analysis and design. Image Processing, 9, 733-736.
  • [27] Eslami R., Radha H. (2004). Wavelet-based Contourlet transform and its application to image coding. Image Processing, 5(10), 3189-3192.
  • [28] Cunha A.L,, Zhou J., Do M.N. (2006). The nonsubsampled contourlet transform: theory, design, and application. Image Processing, 15(10), 3089-3101.
  • [29] Jiang G.M. (2010). Production technology of warp-knitted fabric-warp knitting theory and typical products. First Edition. Beijing, China: Textile & Apparel Press, 1-3.
  • [30] Mahajan P.M, Kolhe S.R., Patil P.M. (2009). A review of automatic fabric detection techniques. Advances in Computational Research, 1(2), 18-29.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.