Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Free vibrations of slender systems are the subject of many scientific and research works. In this work, the boundary problem of free vibrations of a compressed column, which is additionally heat loaded, is considered. The issue of heat flow in the column is solved using the Finite Element Method. Averaged distribution of material properties is obtained in individual segments of the column in subsequent heating times. The mathematical model of free vibrations takes into account the thermal expansion of the material and the effect of changing the Young's modulus resulting from the effect of heat load. The boundary problem of the free vibrations of the considered system is limited to the linear range (the linear component of natural frequency is considered). The influence of the heat source exposure time on the course of characteristic curves (on the plane: load – natural frequency) is determined. The results are presented for various column diameters.
Czasopismo
Rocznik
Tom
Strony
art. no. 2019211
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Dąbrowskiego 73, 42-201 Częstochowa
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Dąbrowskiego 73, 42-201 Częstochowa
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Dąbrowskiego 73, 42-201 Częstochowa
Bibliografia
- 1. M. H. Taha, S. Abohadima, Mathematical Model for vibrations of non-uniform flexural beams, Engineering Mechanics, 15 (2008) 3 – 11.
- 2. A. Khnaijar, R. Benamar, A discrete model for nonlinear vibrations of a simply supported cracked beams resting on elastic foundations, Diagnostyka, 18 (2017) 39 – 46.
- 3. P. Priyadarshan, A. Sarkar, Vibration Control of Frame structure, Procedia Engineering, 144 (2016) 414 – 424.
- 4. A. M. Ibrahim, H. Ozturk, M. Sabuncu, Vibration analysis of cracked frame structures, Structural Engineering and Mechanics, 45 (2013) 33 – 52.
- 5. M. Nagyová, J. Ravinger, Stability and Vibration of Imperfect Column, Procedia Engineering, 40 (2012) 286 – 291.
- 6. S. Uzny, K. Sokół, The Bernoulli-Euler and Timoshenko Theories in the Context of Research on the Characteristic Curves of Column with Different Boundary Conditions, AIP Conference Proceedings, 1648 850036 (2015).
- 7. D. F. Cui, H. Y. Hu, Thermal buckling and natural vibration of the beam with an axial stick–slip–stop boundary, Journal of Sound and Vibration, 333 (2014) 2271 – 2282.
- 8. D. F. Cui, H. Y. Hu, Primary resonance of lateral vibration of a heated beam with an axial stick–slip–stop boundary, Journal of Sound and Vibration, 339 (2015) 230 – 246.
- 9. J. B. Gunda, Thermal post-buckling & large amplitude free vibration analysis of Timoshenko beams: Simple closed-form solutions, Applied Mathematical Modelling, 38 (2014) 4548 – 4558.
- 10. N. Wattanasakulpong , B. G. Prusty, D. W. Kelly, Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams, International Journal of Mechanical Sciences, 53 (2011) 734 – 743.
- 11. CEN (European Committee for Standardization), Design of steel structures - Part 1-2: General rules – Structural fire design, Eurocode 3, (1993) Brussels.
- 12. A. Ancas, D. Gorbanescu, Theoretical models in the study of temperature effect on steel mechanical properties, The Bulletin of the Polytechnic Institute of Jassy, Construction. Architecture Section, 52 (2006) 49 – 54.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e22d673f-fdab-4dd3-b418-e8e5afb8e0d0