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An efficient C0 continuous finite element (FE) model is developed based on a combined theory (refine higher 
order shear deformation theory (RHSDT) and least square error (LSE) method) for the static analysis of a soft 
core sandwich plate. In this (RHSDT) theory, the in-plane displacement field for the face sheets and the core is 
obtained by superposing a global cubically varying displacement field on a zig-zag linearly varying displacement 
field with a different slope in each layer. The transverse displacement assumes to have a quadratic variation 
within the core and it remains constant in the faces beyond the core. The proposed model satisfies the condition 
of transverse shear stress continuity at the layer interfaces and the zero transverse shear stress condition at the top 
and bottom of the sandwich plate. The nodal field variables are chosen in an efficient manner to circumvent the 
problem of C1 continuity requirement of the transverse displacements. In order to calculate the accurate through 
thickness transverse stresses variation, the Least Square Error (LSE) method has been used at the post processing 
stage. The proposed combined model (RHSDT and LSE) is implemented to analyze the laminated composites 
and sandwich plates. Many new results are also presented which should be useful for future research.  
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1. Introduction 
 
 Composite and sandwich laminates are widely used in civil engineering, aerospace, automotive 
industry, submarines and other engineering fields due to their advantage of high stiffness and strength to 
weight ratio. A sandwich construction is a special type of laminated structure having a low strength core and 
high strength face sheets in the form of composite laminates. Laminated composite (e.g., GFRP, CFRP etc.) 
structures are weak in shear due to their low shear modulus compared to extensional rigidity. Thus the effect 
of shear deformation is quite significant which may lead to failure and it becomes more complex in the case 
of sandwich construction, as the material property variation is very large between the core and face layers.  
 For reliable and safe designs, it is necessary to understand well the structural behavior of laminated 
composite and sandwich plates. So it is necessary to develop appropriate computational models for 
accurately predicting the responses of these laminated sandwich structures. In this context, a number of 
theories have been developed for accurate modeling of the shear deformation in a refined manner. The 
Classical Plate Theory (Reissner, 1944) under-predicts displacements and over-predicts the natural 
frequencies and the buckling loads. However, this kind of approach is not sufficient for laminated plates due 
to neglecting the transverse shear deformation in the laminates. 
 Based on their assumed displacement fields, these plate theories can be grouped as: (1) single layer 
plate theory and (2) layer-wise plate theory. In the single layer plate theory, the deformation of the plate is 
expressed in terms of unknown parameters of the reference plane, which is usually taken at the middle plane 
of the plate. In this context, the first-order shear deformation theory (FSDT) (Yang et al., 1996) may be 
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considered as the simplest option. In this theory, the transverse shear strain is assumed to have uniform 
variation over the entire plate thickness (i.e., the transverse shear stress is constant). It is also known as 
Reissner-Mindlin’s plate theory.  
 Goyal and Kapania (2007) developed a five node beam FE model of twenty four degrees of freedom, 
based on FSDT for static as well as dynamic analysis. However, these theories (FSDT) require a shear 
correction factor to compensate for the actual parabolic variation of the shear stress but there are some 
improvements, which allow the warping of plate sections to have a higher-order variation of transverse shear 
stresses/strains along the thickness. The performance of the first-order shear deformation theory is strongly 
dependent on shear correction factors (Vlachoutsis, 1992). 
 For a better representation of the transverse shear deformations, higher order shear deformation 
theories (HSDT) are proposed by Lo et al. (1977); Reddy (1984); Kant (1982); Manjunatha et al. (1992) and 
a few others, with the aim to avoid the use of shear correction factors, to include actual cross sectional 
warping and to get the realistic variation of the transverse shear strains and stresses through the plate 
thickness. Kant (1982) derived the complete set of governing equations for the analysis of both thick and thin 
elastic plates with the help of a refined higher order theory. This theory was based on a higher order 
displacement model and the three-dimensional Hooke’s laws for the plate material, it gives rise to a more 
realistic quadratic variation of the transverse shearing strains and linear variation of the transverse normal 
strain through the plate thickness and Manjunatha and Kant (1992) proposed a C0 finite element model based 
on the same higher order theory (Kant, 1982) for reliable predictions of interlaminar stresses in layered 
composite and sandwich laminates. Later, Kant and Swaminathan (2002) reported analytical solutions for the 
static analysis of laminated composite and sandwich plates based on the higher order refined theory (Kant, 
1982) and thus eliminated the need for shear correction factors. Using Reddy’s displacement field for the 
third order shear deformation theory, a set of dynamic equations was derived for modelling the behaviour of 
a laminated plate by Aagaah et al. (2003). Pervez et al. (2005) presented a two dimensional serendipity 
model based on HSDT for the static analysis of a laminated composite plate. Wu et al. (2005) presented C1 
four node quadrilateral element and C1

 three node triangular element developed on the basis of the global 
local higher order shear deformation theory for the static analysis of an angle-ply laminated plate. Kulkarni 
and Kapuria (2007) proposed a new discrete Kirchhoff quadrilateral element based on Reddy’s HSDT. 
Aydogdu (2009) presented HSDT for the static, vibration and buckling analysis of laminated composite 
plates, where the shear deformation function was chosen according to 3-D results by using the inverse 
method. A nine-node rectangular element with nine degrees of freedom at each node based on HSDT was 
developed by Tu et al. (2010) for the bending and vibration analysis of laminated and sandwich composite 
plates. Ferreira et al. (2011) presented the radial basis function collocation method for the static and vibration 
analysis of thick plates using FSDT and HSDT of Kant. For the analysis of thin and thick composite plates, 
Roque et al. (2011) used the higher order shear deformation theory and a radial basis function. Recently, 
Zhen et al. (2012) described the short coming of zigzag theories, i.e., the requirement of C1 continuity 
condition and presented an eight node C0 FE model by taking out the first derivatives of transverse 
displacements from the in-plane displacement fields for the static analysis of laminated sandwich plates. Due 
to different values of shear rigidity at the adjacent layers, HSDT shows discontinuity in the shear stress 
distribution at the layer interfaces, and a continuous variation of the transverse shear strain across the 
thickness. But the actual behavior of a composite laminate is opposite, i.e., the transverse shear stress must 
be continuous at the layer interface and the corresponding strain may be discontinuous (Sheikh and 
Chakrabarti, 2003).  
 In order to overcome the above disparity, Srinivas (1973), Toledano and Murakami (1987), Robbins 
et al. (1993), Li et al. (1995), and some other investigators proposed layer-wise plate theories. The layer-
wise theories may be classified as a discrete layer plate theory and refined plate theory. In the discrete layer 
plate theory unknown displacement components are taken at all the layer interfaces. Discrete layer theories 
proposed by Toledeno and Murakami (1987), Reddy (1987), Li and Liu (1995), Robbins and Reddy (1996) 
and many others assume a unique displacement field in each layer and displacement continuity across the 
layers. Ramesh et al. (2009) presented a 45-node triangular element with 7 degrees of freedom at each node, 
based on the HSDT and layer-wise plate theory of Reddy for the static analysis of the laminated composite 
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plate. The performance of this plate theory is good but it required huge computational involvement in 
analyzing a multi-layered plate since the number of unknowns increases directly with the increase in the 
number of layers. 
 A major development in this direction is due to Di Sciuva (1984), Liu and Li (1996), Murakami 
(1986) and few others. They proposed a zigzag plate theory (also called the refined plate theory) where the 
layer-wise theory is initially used to represent the in-plane displacements having piecewise linear variation 
across the plate thickness. The unknowns at the different interfaces are subsequently expressed in terms of 
those at the reference plane through satisfaction of transverse shear stress continuity at the layer interfaces 
and this makes the number of unknowns to be independent of the number of layers. In some improved 
version of these theories, the condition of zero transverse shear stresses at the plate/beam top and bottom was 
also satisfied. The theories developed by Murakami (1986), Di Sciuva (1987), Lee et al. (1990), Cho and 
Parmerter (1993), Cho and Averill (1997), and many others fall under this category. 
 A further improvement in this direction is due to Cho and Parmerter (1992), Di Sciuva (1992), 
Bhaskar and Varadan (1989), and some other investigators who considered the variation of in-plane 
displacements to be a superposition of a piecewise linearly varying field on an overall globally higher order 
variation. Carrera (2004) and Demasi (2005) considered higher order terms in the displacement field, using 
Mukarmi’s (Mukarmi, 1986) zigzag function and the assumptions for interlaminar continuity of transverse 
stresses. However applying the static condensation technique makes it possible to eliminate the unknowns 
related to the interlaminar continuity of transverse stresses and thus, to derive efficient plate theories 
(Demasi, 2009a; 2009b).  
 A triangular element was presented by Chakrabarti and Sheikh (2004) based on the zigzag theory, 
which shows excellent performance though the element does not satisfy the normal slope continuity 
requirement. Akhras and Li (2007) developed a spline finite strip method based on Cho’s higher order zigzag 
theory for the static analysis of the plate. Kapuria and Kulkarni (2007) presented a four node quadrilateral 
element based on the third order zigzag theory for the analysis of laminates. The need of C1 continuity 
requirement is circumvented by using a discrete Kirchoff constraint approach, where the derivaties of 
transverse displacement are replaced by rotational variables. Fares and Elmarghany (2008) developed a first 
order zigzag theory of composite plates using Ressiner’s mixed variational formula. Recently, Ferreira et al. 
(2011) and Rodrigues et al. (2011) presented radial basis functions- finite differences collocation and unified 
formulation for the analysis of laminated plates based on Murkami’s zigzag theory. These theories (zigzag) 
provide a very accurate approximation of the structural behavior even for a lower span to thickness ratio. 
However, the zigzag theory has a problem in its finite element implementation as it requires C1 continuity of 
the transverse displacement at the nodes. Zhen and Wanji (2010) proposed C0 type higher-order theory for 
bending analysis of laminated composite and sandwich plates. However, in this article, the analytical 
formulations and solutions are only presented for thermo-mechanical bending analysis of laminated 
composite and sandwich plates. Zhen et al. (2010) also proposed C0 type finite element based higher-order 
theory for accurately predicting natural frequencies of sandwich plates with soft core. These theories are 
usually referred as refined higher order shear deformation theory (RHSDT). However, there are very few C0 
elements reported in the literature which can model the RHSDT. 
 To combine the benefits of the discrete layer-wise and higher order zigzag theories, Icardi (2001a; 
2003b), Yip and Averill (1996) and many other authors developed theories which are known as sub-
laminated models. Cho and Averill (2000) presented an improved sub-laminate model with the first order 
zigzag approximation of displacement within each sub-laminate, which contains an eight node C0 finite 
element (FE) having five displacement degrees of freedom in each node for each sub-laminate. Averill 
(1994) developed a C0 finite element based on the first order zigzag theory and overcame the C1

 continuity 
requirement by incorporating the concepts of independent interpolations and penalty functions. Hermitian 
functions were used by Di Sciuva (1995a; 1993b) to approximate the transverse displacement in his 
formulations. Carrera (1996) used two different fields along the laminate thickness direction for 
displacement and transverse shear stress respectively for his formulation. Averill and Yip (1996) developed a 
C0

 finite element based on the cubic zigzag theory, using interdependent interpolations for transverse 
displacement and rotations and penalty function concepts. Aitharaju and Averill (1999) developed a new C0 
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FE based on a quadratic zigzag layer-wise theory. For eliminating shear locking phenomenon, the shear 
strain field is also made field consistent. The transverse normal stress was assumed to be constant through 
the thickness of the laminate. The new finite element FE was applied to model the beam as a combination of 
different sub-laminates. 
 A C0 plate model based on enhanced first order theory (EFSDT) was presented by Kim and Cho 
(2005a; 2006b), where it was shown that the displacements, in-plain strains and stresses can be approximated 
to those of the three dimensional theory or higher order theory, in the least square sense. Recently, Kim and 
Cho (2007) developed a C0

 model using the EFSDT based on the mixed variational theorem, which also 
satisfies the lateral conditions at the top and bottom surfaces of the plate. The mixed FE approach was 
presented by Rao et al. (2001), Ramtekekar et al. (2002a; 2003b), Bambole and Desai (2007) and many 
others, where the stress components were assumed as degrees of freedom at interface nodes along with 
displacement degrees of freedom for the accurate analysis of the stresses.  
 Laminated soft core sandwich structures are extensively used mainly in weight minimization 
applications. The transverse deformation is very significant in the sandwich structure as there is an abrupt 
change in the values of transverse shear rigidity and thickness of the face sheet and the core. As such more 
attention must be given for the accurate modeling of the variation of transverse deflection across the depth of 
a sandwich structure having a soft core. Frostig (2003) presented the classical and the higher order 
computational models of unidirectional sandwich panels with incompressible and compressible cores to 
demonstrate the differences in overall response of the panels as well as in the vicinity of the localized loads 
and supports. Givil et al. (2007) presented the dynamic model based on the higher order sandwich panel 
theory to study the behavior of the soft core sandwich panel under dynamic loading.   
 So it is required to introduce unknown transverse displacement fields across the depth in addition to 
that in the reference plane to represent the variation of transverse deflection in a laminated sandwich 
structure. This can be done by using sub-laminate plate theories but the number of unknowns will increase 
rapidly with the increase in the number of sub-laminates. On the other hand, an introduction of additional 
unknowns in the transverse displacement fields invites additional C1 continuity requirements in its finite 
element implementation by using the zigzag theory as mentioned earlier. Moreover, the application of a C1

 

continuous finite element is not encouraged in a practical analysis. Recently, Pandit et al. (2008a; 2008b) 
proposed a higher order zigzag theory for the analysis of sandwich plates with a soft compressible core. To 
circumvent the above problem of C1

 continuity they used separate shape functions to define the derivatives of 
transverse displacements in order to develop a C0

 finite element model for the implementation of the 
proposed higher order zigzag theory. However, it imposed some constrains, which are enforced variationally 
through penalty approach. The selection of a suitable value for the penalty stiffness multiplier is quite 
arbitrary and is a well known problem in the finite element method. Recently, Chakrabarti et al. (2011) 
proposed a new FE model based on the higher order zigzag theory for the static analysis of a laminated 
sandwich beam with a soft core. However, the FE model proposed in this paper is based on the one 
dimensional static analysis of a sandwich beam and as such there a need of further improvement in the FE 
model formulation which can be used for laminated sandwich plates with a soft core. 
 An efficient C0

 finite element model based on the higher order zigzag theory is proposed in this paper 
for the analysis of a sandwich plate with a soft compressible core. In this model, the in-plane displacement 
fields are assumed as a combination of a linear zigzag function with different slopes at each layer and a 
global cubically varying function over the entire thickness. The transverse displacement is considered to be 
quadratic within the core and constant in the face sheets. The proposed model satisfies the transverse shear 
stress continuity conditions at the layer interfaces and the zero transverse shear stress condition at the top and 
bottom of the plate. The isoparametric quadratic plate element has nine nodes with eleven field variables 
(i.e., in-plane displacements and transverse displacement at the reference mid surface, at the top and at the 
bottom of the plate along with rotational degrees of freedom at the reference mid surface and top and bottom 
of the plate) at each node.  The displacement fields are chosen in an efficient manner that there is no need to 
impose any penalty stiffness in the formulation. The element may also be matched quite conveniently with 
other C0

 elements.  
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 The present plate model is used to solve many problems having different loadings, geometry 
boundary conditions and others. The present FE model is capable of analyzing laminated sandwich structures 
having a soft compressible core very accurately. 
 
2. Mathematical formulations 
 
2.1. FE Model for displacements and in-plane stresses evaluation 
 

 
 

Fig.1. General lamination lay-up and displacement configuration. 
 
 The in-plane displacement field (Fig.1) is chosen as follows 
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where, u0 and v0 denote the in-plane displacements of any point on the middle surface (i.e., u0 along the x-
axis and v0 along the y-axis) of any point on the mid surface, θx  and θy are the rotations of the normal to the 
middle plane about the x-axis and y-axis respectively, nu and nl are the number of upper and lower layers, 

respectively, βx, βy, ηx and ηy are the higher order unknown, , , ji i
xu yu xl    and j

yl  are the slopes of i-th / j-th 

layer corresponding to the upper and lower layers, respectively and  u
iH z z  and  l

jH z z   are the 

unit step functions. 
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Fig.2. Transverse displacement (w) variation through the thickness of the sandwich plate. 
 
 The transverse displacement is assumed to vary quadratically through the core thickness and constant 
over the face sheets (as shown in Fig.2) and it may be expressed as 
 
  1 u 2 0 3 lW l w l w l w           for the core region, 
 
        uw                for upper face layers, (2.3) 

 
        lw     for lower face layers  

 
where wu, w0 and wl are the values of the transverse displacement at the top layer, middle layer and bottom 
layer of the core, respectively, and l1, l2 and l3 are Lagrangian interpolation functions in the thickness co-
ordinate as defined below. 
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 The stress–strain relationship considering the plane strain condition of an orthotropic layer/ lamina 
(say k-th layer) having any fiber orientation with respect to structural axes system (x-z) may be expressed as 
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where   ,    and KQ   are the stress vector, the strain vector and the transformed rigidity matrix of k-th 

lamina, respectively. 
 Utilizing the conditions of zero transverse shear stress at the top and bottom surfaces of the plate and 
imposing the conditions of the transverse shear stress continuity at the interfaces between the layers along 

with the conditions, u
x x    and u

y y    at the top and l
x x    and l

y y    at the bottom of the plate, βx, 
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ηx, βy , ηy, i
xu , i

xl , ,i i
yu yl  ,  /uw x  ,  /lw x  ,  /uw y   and  /lw y   may be expressed in terms 

of the displacements u0, v0, θx, θy, 
u
x , u

y , l
x  and l

y  as 
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and the elements of [A] are dependent on material properties. It is to be noted that last four entries of the 
vector {B} help to define the derivatives of transverse displacement at the top and bottom faces of the plate 

in terms of the displacements u0, v0, θx , θy , 
u
x , u

y , l
x  and l

y  to overcome the problem of C1 continuity as 

mentioned before. 
Using the above equations, the in-plane displacement fields as given in Eqs (2.1)-(2.2) may be expressed as  
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where the coefficients bi’s and ci’s are the function of thickness coordinates, unit step functions and material 
properties as defined in Appendix A. 
 The generalized displacement vector {δ} for the present plate model can now be written with the 
help of Eqs (2.3), (2.6) and (2.7) as 
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 Using the linear strain-displacement relation and Eqs (2.1)-(2.5), the strain field may be expressed in 
terms of unknowns (for the structural deformation) as 
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and the elements of [H0] are functions of z and unit step functions, as given in Appendix B. 
 With the quantities found in the above equations, the total potential energy of the system under the 
action of a transverse load may be expressed as 
 
   – e s extU W   (2.10) 
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where Us is the strain energy and extW  is the energy due to the external transverse static load.  

 Using Eqs (2.3) and (2.6), the strain energy (Us) is given by 
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and the energy due to the externally applied distributed transverse static load of intensity q(x, y) can be 
calculated as 
 

  .extW wqdxdy  . (2.13) 

 
 In the present problem, a nine-node quadratic element with eleven field variables (u0, v0, w0, θx, θy, uu, 
vu, wu, ul , vl and wl) per node is employed. Using the finite element method the generalized displacement 
vector {δ} at any point may be expressed as 
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x y x yu lu v w w w        as defined earlier, δi is the displacement vector 

corresponding to node i, Ni is the shape function associated with the node i and N is the number of nodes per 
element, which is nine in the present study. 
 With the help of Eq.(2.14), the strain vector {ε} that appeared in Eq.(2.9) may be expressed in terms 
of unknowns (for the structural deformation) as  
 
     [ ]B    (2.15) 

 
where [B] is the strain-displacement matrix in the Cartesian coordinate system. 
         The elemental potential energy as given in Eq.(2.10) may be rewritten with the help of Eqs (11)-(15) as 
 

             eП
TT TT T w1 1

B D B dxdy B N qdxdy
2 2

          

                T T
e e

1 1
K P

2 2
      (2.16) 

where 

        T
eK B D B dx  , (2.17) 

    [ ]w T
eP N qdxdy   (2.18) 

 
where, [Nw] is the shape function like matrix with non-zero terms associated only with the corresponding 
transverse nodal displacements. 
         The equilibrium equation can be obtained by minimizing Пe as given in Eq.(2.16) with respect to {δ} as 
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     { }e eK P   (2.19) 

 
where [Ke] is the element stiffness matrix and {Pe} is the nodal load vector. The integration involved in the 
above expressions is carried out numerically by following the consistent integration schemes in order to 
avoid the shear locking problems. 
 The global stiffness matrix and global load vector for the whole plate is then formed by taking the 
contribution of all the plate elements. Finally, the global linear simultaneous equations are formed and solved 
for the problem of the sandwich plate after incorporation of appropriate boundary conditions. The in-plane 
stresses are calculated with the help of a constitutive relationship by using the condition of stress continuity 
as in Eq.(2.4). Since it is very difficult to accurately evaluate the transverse stresses using 2D FE models 
available in the literature therefore the least square error (LSE) method proposed by Khandelwal et al. 
(2012), is used to calculate these transverse stresses accurately at the post processing stage. The details of the 
LSE method are not presented here, it can be obtained from Khandelwal et al. (2012). 
 A numerical code is developed to implement the above mentioned operations involved in the 
proposed FE model to calculate deflections and stresses in the sandwich plate. The skyline technique has 
been used to store the global stiffness matrix in a single array and Gaussian decomposition scheme is 
adopted for the solution. 
The following different boundary conditions are used:  
1. Boundary line parallel to the x axis 

 Simply supported condition: The degrees of freedoms u0, v0, w0, θx, 
u
x , l

x , wu, wl are restrained 

while θy, 
u
y  and l

y  are unrestrained.  

 Clamped condition: All the nodal degrees of freedom at the boundary are fully restrained. 
 Free boundary condition: All the nodal degrees of freedom at the boundary are unrestrained. 

2. Boundary line parallel to the y axis 

 Simply supported condition: The degrees of freedoms u0, v0, w0, θy, 
u
y ,  l

y , wu, wl are restrained 

while θx, 
u
x  and l

x  are unrestrained. 

 Clamped condition: All the nodal degrees of freedom at the boundary are fully restrained. 
 Free boundary condition: All the nodal degrees of freedom at the boundary are unrestrained. 

 
3. Numerical results and discussions 
 
 In order to demonstrate the accuracy and applicability of the proposed C0 plate FE model based on 
the refined higher order shear deformation theory (RHSDT) and the least square error method (LSE) a 
number of numerical problems on composites and laminated sandwich plates are solved under static loading. 
The general geometric details of the plate problem considered for different problems are shown in Fig.3. The 
results obtained are presented in the form of different tables and figures. Initially, a composite plate problem 
is solved by using the proposed model to study the displacement convergence and also to compare the 
present results with some already published results. Finally, the proposed model is applied to solve many 
problems to generate results in the form of deflections and stresses. An accurate calculation of the deflection 
and transverse shear stresses in different cases is the main feature of all these studies. 
 A multiplication factor m=100E2f h

3/qa4 is used to make non-dimensional the transverse displacement 
(w), m=h2/qa2 is used to make non-dimensional the in-plane stresses (xx, yy, xy) and m=h/qa is used to 
make non-dimensional the transverse shear stresses (xz, yz), where E2f is the elastic constant of the ply 
material in the y direction, h is the total thickness of the plate, a is the least dimension of the plate plan form 
and q is the magnitude of the applied static load on the plate. 
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Fig.3. Rectangular plate having a mesh of mn. 
 
3.1. Rectangular Cross-ply (0/90/0) laminate subjected to distributed load of sinusoidal variation 
 
 The plate as shown in Fig.3 is simply supported at its four edges and subjected to static sinusoidal 
load distribution q(x,y)=q0 sin(x/a)sin(y/b). The study is made for two different aspect ratios (b/a=1.0 and 
b/a=3.0). For the aspect ratio b/a=1.0, the thickness ratio (h/a) is taken as 0.5, 0.1 and 0.01 and for the aspect 
ratio b/a=3.0, the thickness ratio (h/a) is taken as 0.5, 0.1, 0.05 and 0.01, respectively. In all the cases the full 
plate is analyzed with different mesh divisions (Fig.3). The non-dimensional displacements (transverse) and 
stresses (in-plane normal and transverse shear) obtained using constitutive relations at the important 
locations are presented in Tab.2 and Tab.3 mainly to study the rate of convergence and validation of the 
displacements and stresses. It may be observed in Tab.2 and Tab.3 that the displacements are converged at 
mesh division (8×8). However, more mesh divisions are required for the convergence of the stresses as 
expected. As such a mesh division of (12×12) is taken for all subsequent analyses to get sufficiently accurate 
results corresponding to displacement as well as stresses. 
 
Table 1. Material properties used for the core and face sheets. 
 

Location Elastic properties 
E1 E2 E3 G12 G13 G23 υ12 υ13 υ32

Face 25.0 1.0 1.0 0.5 0.5 0.2 0.25 0.25 0.25 
Core 0.04 0.04 0.5 0.016 0.06 0.06 0.25 0.02 0.25 

 
 For the comparison of the present results a computer code is also developed to generate results based 
on the 3-D elasticity solution of Pagano (1970) corresponding to the plane strain condition. The present FE 
results are also compared with the results obtained by Ramesh et al. (2009) using a 45-node triangular element 
with seven field unknowns at each node based on LT and TSDT. The total number of unknowns per element is 
99 in the present element as compared to 315 in Ramesh et al. (2009) case. The results reported by Wu et al. 
(2012), Kulkarni et al. (2007), Aydogdu (2009), Liou and Sun (1987) and Sheikh and Chakrabarti (2003) based 
on HSDT and the analytical results reported by Reddy (19984) and Kant and Swaminathan (2002) are also used 
to show the accuracy of the present model. From Tab.2, it may be observed that the performance of the present 
FE model is quite good for predicting the deflections with sufficient accuracy as compared to other models 
especially at a higher thickness ratio (h/a) with a smaller number of element degrees of freedom.  
 Now, the through-the-thickness variations of normalized in-plane normal stresses (xx, yy) are 
obtained at the plate center (a/2, b/2) in the present analysis (mesh size: 1212, b/a=1, h/a=0.1 and 
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h/a=0.25), and are plotted with the 3D elasticity solution Pagano (1970) in Figs 4-5. The figures show that 
the present results are in excellent agreement with the elasticity solution. 
 

 
 
Fig.4.  Through thickness variation of normalized in-plane stress xx (at x=a/2, y=b/2) for rectangular cross-

ply (0/90/0) plate under simple support condition and subjected to sinusoidal loading. 
 

 
 
Fig.5. Through thickness variation of normalized in-plane stress yy (at x=a/2, y=b/2) for rectangular cross-

ply (0/90/0) plate under simple support condition and subjected to sinusoidal loading. 
 
 In order to show the performance of the LSE method, the proposed combined model is used for 
calculating the transverse shear stresses across the thickness of the plate having different parametric 
variations. The transverse shear stresses are calculated for different problems by using both the direct 
constitutive relationship as well as by the equilibrium equations used in the LSE method. The abbreviations 
‘Equil’ and ‘Const’ preceded by an underscore in the legends of the figures indicate quantities evaluated 
using 3D equilibrium equations and constitutive relations, respectively. Through-the-thickness distribution of 
transverse shear stresses xz is obtained at the centre of the left edge (x=0 and y=b/2) of the plate, and 
transverse shear stresses yz are obtained at the centre of the bottom edge (x= a/2 and y=0) of the plate 
(h/a=0.1 and h/a=0.25), and are plotted with the 3D elasticity solution Pagano (1970) in Figs 6-7. The figures 
show that the present results are in good agreement with the elasticity solution. 
         Although the individual layers possess different orientations, they have equal thickness and material 
properties as given in Tab.1. This is applicable to all the subsequent problems unless mentioned otherwise. 
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Table 2.  Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz ) at the important points of 

a simply supported square laminate (0/90/0) under sinusoidal load of amplitude q0(b/a=1). 
 

 
h/a Reference Theory w  

(a/2, b/2, 0) 
xx  

(a/2, b/2, h/2) 
yy  

(a/2, b/2, h/6) 
xz a 

(0, b/2, 0) 
yz a 

(a/2, 0, 0) 

0.01 

Present (2x2)b RHSDT 0.4319 0.6194 0.2057 0.5078 0.0783 
Present (4x4) RHSDT 0.4300 0.5634 0.1873 0.4313 0.0662 
Present (8x8) RHSDT 0.4298 0.5442 0.1810 0.4082 0.0623 
Present (12x12) RHSDT 0.4298 0.5403 0.1798 0.4033 0.0615 
Present (16x16) RHSDT 0.4298 0.5389 0.1793 0.4014 0.0612 
Pagano (1970) 3D-Elasticity 0.4347 0.5393 0.1808 0.3947 0.0828 
Reddy (1984) HSDT 0.4340 0.5390 - - 0.0750 
Sheikh and Chakrabarti 
(2003) HSDT 0.4350 0.5496 0.1828 0.2401 0.0749 
Ramesh et al. (2009) LWTc 0.4349 0.5395 0.1808 0.3921 0.0754 
Ramesh et al. (2009) TSDTd 0.4345 0.5394 0.1806 0.3952 0.0835 
Wu et al. (2012) HSDT 0.4351 0.5521 0.1743 0.3723 0.0667 
Aydogdu (2009) HSDT 0.4350 0.5389 0.1806 0.3003 0.07905 
Chakrabarti and Sheikh 
(2004) RHSDT 0.4358 - - - - 
Kulkarni and Kapuria (2007) TOT 0.4349 0.5403 0.1810 0.2592 0.0752 
Kant and  
Swaminathan (2002) HSDT 0.4343 0.5392 0.1807 - - 

0.1 

Present (12x12) RHSDT 0.7480 0.5920 0.2874 0.3657 0.0882 
Pagano (1970) 3D-Elasticity 0.7530 0.5906 0.2845 0.3573 0.1228 
Reddy (1984) HSDT 0.7130 0.5684 - - 0.1033 
Sheikh and Chakrabarti 
(2003) HSDT 0.7140 0.5806 0.2722 0.2437 0.1015 
Ramesh et al. (2009) LWT 0.7535 0.5910 0.2845 0.3576 0.1225 
Ramesh et al. (2009) TSDT 0.7178 0.5850 0.2713 0.3671 0.1178 
Wu et al. (2012) HSDT 0.7624 0.6331 0.2851 0.3540 0.1257 
Aydogdu (2009) HSDT 0.7336 0.5780 0.2750 0.2820 0.1110 
Chakrabarti and Sheikh 
(2004) RHSDT 0.7522 - - - - 
Kulkarni and Kapuria (2007) TOT 0.7136 0.5696 0.2697 0.2453 0.1036 
Kant and Swaminathan (2002) HSDT 0.7151 0.5836 0.2705 - - 
Liou and Sun (1987) Hybrid FEM 0.7546 0.5800 0.2850 0.3670 0.1270 

0.25 

Present (12x12) RHSDT 2.0151 0.7635 0.5771 0.2622 0.1578 
Pagano (1970) 3D-Elasticity 2.0059 0.7548 0.5341 0.2559 0.2172 
Reddy (1984) HSDT 1.9220 0.7345 - - 0.1832 
Sheikh and Chakrabarti 
(2003) HSDT 1.9230 0.7500 0.5080 0.2023 0.1831 
Ramesh et al. (2009) LWT 1.9927 0.8014 0.5336 0.2562 0.2167 
Ramesh et al. (2009) TSDT 1.9136 0.7672 0.5081 0.2809 0.2103 
Wu et al. (2012) HSDT 2.0557 0.8435 0.5610 0.2569 0.2205 
Aydogdu (2009) HSDT 1.9856 0.7810 0.5090 0.2260 0.1970 
Chakrabarti and Sheikh 
(2004) RHSDT 1.9502 - - - - 
Kulkarni and Kapuria (2007) TOT 1.9248 0.7357 0.5040 0.2029 0.1837 
Kant and Swaminathan 
(2002) HSDT 1.8948 0.7648 0.4939 - - 
Liou and Sun (1987) Hybrid FEM 2.020 0.7170 0.5170 0.2630 0.2210 

 

a Values of transverse shear stresses obtained from constitutive relation 
b Entries inside the parenthesis indicate mesh division  
c Layer wise theory 
d Third order shear deformation theory 
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Table 3.  Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz ) at the important points of 

a simply supported rectangular laminate (0/90/0) under sinusoidal load of amplitude q0(b/a=3). 
 

h/a Reference Theory  w  

(a/2, b/2, 0) 
xx  

(a/2, b/2, h/2) 
yy  

(a/2, b/2, h/6) 
xz a 

(0, b/2, 0) 
yz a 

(a/2, 0, 0) 

0.01 
 

 

Present (2x2)b RHSDT 0.5107 0.7242 0.0302 0.1199 0.0139 
Present (4x4) RHSDT 0.5054 0.6547 0.0263 0.4820 0.0123 
Present (8x8) RHSDT 0.5052 0.6327 0.0255 0.4561 0.0115 
Present (12x12) RHSDT 0.5052 0.6281 0.0253 0.4511 0.0113 
Present (16x16) RHSDT 0.5052 0.6264 0.0253 0.4493 0.0113 
Reddy (1984) HSDT 0.5070 0.6240 0.0253 0.2886 0.0129 
Sheikh and 
Chakrabarti (2003) HSDT 0.5097 0.6457 0.0253 0.2847 0.0129 
Pagano (1970) 3D-Elasticity 0.5077 0.6244 0.0253 0.4393 0.0108 
Aydogdu (2009) HSDT 0.5080 0.6240 0.0253 0.3350 0.0083 
Kulkarni  and 
Kapuria (2007) TOTd 0.5078 0.6255 0.0253 0.2893 0.0130 
Liou and Sun (1987) Hybrid FEM - - - - - 
Akhras and Li (2007) HZTc 0.5080 0.6320 0.0256 0.4490 0.0083 

0.05 
 

 

Present (12x12) RHSDT 0.6074 0.6548 0.0291 0.4467 0.0123 
Pagano (1970) 3D-Elasticity 0.6095 0.6500 0.0294 0.4344 0.0119 
Reddy (1984) HSDT 0.5937 0.6407 0.0289 0.2880 0.0139 
Sheikh and 
Chakrabarti (2003) HSDT 0.5965 0.6634 0.0274 0.2859 0.0135 
Aydogdu (2009) HSDT 0.6020 0.6440 0.0293 0.3340 0.0092 
Kulkarni  and 
Kapuria (2007) TOT - - - - - 
Liou and Sun (1987) Hybrid FEM 0.6110 0.6530 0.0298 0.4500 0.0118 
Akhras and Li (2007) HZT - - - - - 

0.1 
 

 

Present (12x12) RHSDT 0.9180 0.7310 0.0405 0.4325 0.0152 
Pagano (1970) 3D-Elasticity 0.9189 0.7260 0.0418 0.4201 0.0152 
Reddy (1984) HSDT 0.8622 0.6924 0.0398 0.2859 0.0170 
Sheikh and 
Chakrabarti (2003) HSDT 0.8649 0.7164 0.0383 0.2851 0.0106 
Aydogdu (2009) HSDT 0.8910 0.7060 0.0418 0.3300 0.0118 
Kulkarni  and 
Kapuria (2007) TOT 0.8636 0.6951 0.0399 0.2871 0.0170 
Liou and Sun (1987) Hybrid FEM 0.9210 0.7090 0.0429 0.4280 0.0151 
Akhras and Li (2007) HZT 0.9200 0.7400 0.0425 0.4360 0.0122 
Pagano (1970) 3D-Elasticity 2.8211 1.0992 0.1088 0.3511 0.0334 
Reddy (1984) HSDT 2.6411 1.0356 0.1028 0.2724 0.0348 
Sheikh and 
Chakrabarti (2003) HSDT 2.6437 1.0650 0.1209 0.2723 0.0320 
Aydogdu (2009) HSDT 2.7560 1.1120 0.1180 0.3080 0.0278 
Kulkarni  and 
Kapuria (2007) TOT 2.6452 1.0377 0.1030 0.2730 0.0349 
Liou and Sun (1987) Hybrid FEM 2.8280 1.0770 0.1080 0.3600 0.0326 
Akhras and Li (2007) HZT 2.7570 1.2200 0.1090 0.3770 0.0277 

 

a Values of transverse shear stresses obtained from constitutive relation 
b Entries inside the parenthesis indicate mesh division 
c Higher order zig-zag theory 
d Third order shear deformation theory 
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Fig.6.  Through thickness variation of normalized transverse shear stress xz (at x=0, y=b/2) for rectangular 
cross-ply (0/90/0) plate under simple support condition and subjected to sinusoidal loading. 

 
 

 
 

Fig.7.  Through thickness variation of normalized transverse shear stress yz (at x=a/2, y=0) for rectangular 
cross-ply (0/90/0) plate under simple support condition and subjected to sinusoidal loading. 

 
 
3.2. Symmetric square sandwich plate (0/C/0) having single ply laminated stiff sheets at the faces and 

subjected to distributed load of sinusoidal variation 
 
 The plate as shown in Fig.3 is simply supported at its four edges and subjected to sinusoidal static 
load distribution of intensity q(x, y)=q0 sin(x/a)sin(y/b). The lay-up (f/c/f) has a distribution of thickness 
among the layers as (0.10h/ 0.8h/ 0.1h), where h is the total thickness of the plate. The plate is analyzed with 
the proposed element taking the thickness ratio (h/a) as 0.25, 0.2, 0.1, 0.05 and 0.01. The analysis is carried 
out with the mesh size (Fig.3) of 4×4, 8×8, and 12×12. The non-dimensional transverse displacement and 
non-dimensional stresses for different thickness ratios are reported in Tab.4. Using the zigzag theory, the 
results reported by Pandit et al. (2008) and Singh et al. (2011) incorporating the penalty approach as well as 
the results reported based on hybrid formulation by Ramtekekar (2002) and using the higher order theory, the 
result reported by Kant and Swaminathan (2002) are used to check the accuracy of the present model. From 
Tab.4, the present results are sufficiently close to the results based on the 3-D elasticity solution (Pagano, 
1970) mainly for high thickness ratio. 
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Table 4.  Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz ) at the important points of 

a simply supported square sandwich (0/C/0) plate under sinusoidal load of amplitude q0. 
 

 
h/a Reference 

 w  

(a/2,b/2,0) 
yy  

(a/2,b/2,h/2) 
yy  

 (a/2,b/2,h/2) 

 xz Const 
(0,b/2,0) 

 xz Equil 
(0,b/2,0) 

 yz Const 

(a/2,0,0) 

 yz Equil 

(a/2,0,0) 

0.01 

Present (4x4)b 0.8823 1.1476 0.0638 0.3690 0.2884 0.0372 0.0302 

Present (8x8) 0.8819 1.1074 0.0617 0.3489 0.3134 0.0349 0.0309 

Present (12x12) 0.8819 1.0991 0.0613 0.3446 0.3183 0.0345 0.0311 

Present (16x16) 0.8819 1.0963 0.0611 0.3429 0.3201 0.0343 0.0312 

Pagano (1970) 0.8924 1.0975 0.0550 0.3240 0.3240 0.0297 0.0297 

Pandit et al.(2008) 0.8917 1.1093 0.0547 0.3412 - 0.0324 - 

Tu et al. (2010) 0.8919 1.1069 0.0573 0.3312 - 0.3337 - 

Singh et al. (2011) 0.9017 1.1020 - 0.4079 - - - 

Kant and Swaminathan 
(2002) 0.8913 1.0990 0.0560 - - - - 

0.05 

Present (12x12) 1.2128 1.1113 0.0769 0.3374 0.3118 0.0415 0.0374 

Pagano (1970) 1.2264 1.1098 0.0701 0.3174 0.3174 0.0361 0.0361 

Pandit et al.(2008) 1.2254 1.1055 0.0694 0.3342 - 0.0392 - 

Singh et al. (2011) 1.2424 1.1161 - 0.3429 - - - 

Ramtekekar et al. (2002) - 1.1150 0.0700 0.3170 - 0.0360 - 

Kant and Swaminathan 
(2002) 1.1933 1.1110 0.0705 - - - - 

0.1 

Present (12x12) 2.1786 1.1539 0.1184 0.3185 0.2947 0.0598 0.0537 

Pagano (1970) 2.2004 1.1531 0.1104 0.2998 0.2998 0.0527 0.0527 

Pandit et al.(2008) 2.2002 1.1483 0.1086 0.31580 - 0.0570 - 

Tu et al. (2010) 2.2027 1.1466 0.1105 0.3181 - 0.0532 - 

Singh et al. (2011) 2.2389 1.1530 - 0.3000 - - - 

Ramtekekar et al. (2002) - 1.159 0.1110 0.3030 - 0.0550 - 

Kant and Swaminathan 
(2002) 2.0798 1.1523 0.1100 - - - - 

0.2 Present (12x12) 5.4464 1.3617 0.2216 0.2729 0.2530 0.1025 0.0916 

Pagano (1970) 5.4746 1.3704 0.2094 0.2569 0.2569 0.0918 0.0918 

0.25 

Present (12x12) 7.5873 1.5316 0.2674 0.2538 0.2354 0.1192 0.1063 

Pagano (1970) 7.5962 1.5121 0.2595 0.2387 0.2387 0.1072 0.1072 

Pandit et al.(2008) 7.6552 1.5218 0.2506 0.2520 - 0.1156 - 

Tu et al. (2010) 7.5610 1.5518 0.2483 0.1184 - 0.2447 - 

Singh et al. (2011) 7.8556 1.5480 - 0.2611 - - - 

Ramtekekar et al. (2002) - 1.570 0.2600 0.2400 - 0.1080 - 

Kant and Swaminathan 
(2002) 7.0551 1.5137 0.2648 - - - - 

 

b Entries inside the parenthesis indicate mesh division  
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Fig.8.  Through thickness variation of normalized in-plane stress xx (at x=a/2, y=b/2) for square sandwich 

(0/core/0) plate under simple support condition and subjected to sinusoidal loading. 
 

 
 

Fig.9.  Through thickness variation of normalized in-plane stress yy (at x=a/2, y=b/2) for square sandwich 
(0/core/0) plate under simple support condition and subjected to sinusoidal loading. 

 

 
 

Fig.10. Through thickness variation of normalized transverse shear stress xz (at x=0, y=b/2) for square 
sandwich (0/core/0) plate under simple support condition and subjected to sinusoidal loading. 
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Fig.11. Through thickness variation of normalized transverse shear stress yz (at x= a/2, y=0) for square 

sandwich (0/core/0) plate under simple support condition and subjected to sinusoidal loading. 
 
 Now, the through-the-thickness variations of normalized in-plane normal stresses (xx, yy) are 
obtained at the plate center (a/2, b/2) in the present analysis (mesh size: 1212, b/a=1, h/a=0.1 and 
h/a=0.25), and are plotted with the 3D elasticity solution (Pagano, 1970) in Figs 8-9. The figures show that 
the present results are in excellent agreement with the elasticity solution. 
 Through-the-thickness distribution of transverse shear stresses xz is obtained at the centre of the left 
edge (x=0 and y=b/2) of the plate, and transverse shear stresses yz are obtained at the centre of the bottom 
edge (x= a/2 and y=0) of the plate (mesh size: 1212, b/a=1, h/a=0.1 and h/a=0.25), are plotted with the 3D 
elasticity solution (Pagano, 1970) in Figs 10-11. The figures show that the present results are in good 
agreement with the elasticity solution. 
 
3.3. Un-symmetric laminated square sandwich plate (0/90/C/0/90) subjected to distributed load of 

sinusoidal variation 
 
 An unsymmetrical square laminated sandwich plate (0/90/C/0/90) is considered for the analysis in 
this example under the sinusoidal loading of intensity q(x,y)=q0 sin(x/a)sin(y/b). In the present problem, 
the thickness of the core is taken as 0.8h, while that of each ply in the laminated stiff sheets is 0.05h, where h 
(= 1 inch) is the overall thickness of the plate. Material properties used for the core and each laminated face 
sheets are given in Tab.1. The study has been made for three types of boundary conditions. These are: SSSS, 
i.e., all the four edges are simply supported, CCCC, i.e., all the four edges are clamped and SCSC, i.e., two 
opposite edges are simply supported and other two edges clamped. The values of the non-dimensional 
transverse displacement, in-plane normal and transverse shear stresses are presented in Tab.6 for different 
values of the thickness ratio (h/a) ranging from 0.01 to 0.50.  
 The percentage increase in transverse deformation for the higher thickness ratios is much higher than 
that of lower thickness ratios for both boundary conditions. This is due to the effects of transverse flexibility 
of the core and shear deformation, which are more pronounced at higher thickness ratios. As the thickness of 
the core is 0.8h, so the core compressibility plays a very important role which is reflected in Tab.5. The 
results are in good agreement with the results reported by Pandit et al. (2008) and Singh et al. (2011). 
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Table 5. Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz ) at the important points of an 

un-symmetric square sandwich plate (0/90/C/0/90) under  sinusoidal load of amplitude q0. 

 
 

Boundary condition: SSSS 
h/a Reference  w  

 (a/2,b/2,0) 
xx  

(a/2,b/2,h/2) 
yy  

(a/2,b/2,h/4) 
xz Consti 

(0,b/2,0) 
xz Equil 

(0,b/2,0) 
yz Const 

(a/2,0,0) 
yz Equil 

(a/2,0,0) 
0.01 Present 0.8782 1.0820 1.0536 0.1878 0.1751 0.1812 0.1734 

Pagano (1970) 0.8888 1.0404 1.0500 0.1773 0.1773 0.1773 0.1773 

0.10 
Present 1.7177 1.1270 1.0769 0.1909 0.1741 0.1883 0.1714 
Pagano (1970) 1.7272 1.1002 1.0817 0.1770 0.1770 0.1770 0.1770 
Singh et al. (2011) 1.7420 - - - - - - 

0.25 Present 6.1342 1.4086 1.3490 0.1901 0.1718 0.1888 0.1692 
Pagano (1970) 6.1105 1.3770 1.3697 0.1756 0.1756 0.1751 0.1751 

Boundary condition: CCCC

0.01 
Present 0.2279 0.4392 0.4102 0.2198 0.2078 0.2190 0.2027 
Pandit et al. (2008) 0.2286 0.4270 - 0.2189 - 0.2189 - 
Singh et al. (2011) 0.2260 0.4283 - 0.2348 - - - 

0.05 
Present 0.4299 0.4388 0.4116 0.1661 0.1804 0.1661 0.1770 
Pandit et al. (2008) 0.4296 0.4275 - 0.1828 - 0.1828 - 
Singh et al. (2011) 0.4462 0.4293 - 0.2004 - - - 

0.10 
Present 1.0513 0.4720 0.4450 0.1380 0.1567 0.1383 0.1544 
Pandit et al.(2008) 1.0489 0.4597 - 0.1587 - 0.1586 - 
Singh et al. (2011) 1.0213 0.4621 - 0.1651 - - - 

0.20 
Present 3.4741 0.6280 0.5985 0.1240 0.1313 0.1242 0.1296 
Pandit et al. (2008) 3.4521 0.6170 - 0.1396 - 0.1394 - 
Singh et al. (2011) 3.3421 0.6022 - 0.1422 - - - 

0.25 Present 5.2470 0.7442 0.7127 0.1228 0.1236 0.1231 0.1218 
0.50 

 

Present 19.1560 1.6275 1.5895 0.1264 0.1041 0.1265 0.1021 
Pandit et al. (2008) 18.3454 1.8156 0.1902 0.1227 - 0.1217 - 
Singh et al. (2011) 18.3450 1.8150 - 0.1325 - - - 

Boundary condition: SCSC

0.01 
Present 0.3451 0.4279 0.6303 0.0782 0.0730 0.3061 0.2895 
Pandit et al. (2008) 0.3453 0.4077 - 0.0778 - 0.3086 - 
Singh et al. (2011) 0.3920 0.5986 - 0.0944 - - - 

0.05 
Present 0.6053 0.6069 0.5847 0.1075 0.0985 0.2288 0.2458 
Pandit et al.(2008) 0.6052 0.5850 - 0.1061 - 0.2527 - 
Singh et al. (2011) 0.6080 0.6138 - 0.1542 - - - 

0.10 
Present 1.3039 0.8586 0.5514 0.1437 0.1308 0.1711 0.1918 
Pandit et al. (2008) 1.3026 0.8310 - 0.1418 - 0.1967 - 
Singh et al. (2011) 1.3092 0.7392 - 0.1523 - - - 

0.20 
Present 3.8288 1.1786 0.6554 0.1708 0.1545 0.1369 0.1433 
Pandit et al. (2008) 3.8087 1.1415 - 0.1683 - 0.1539 - 
Singh et al. (2011) 3.8500 1.0189 - 0.1620 - - - 

0.25 Present 5.6638 1.3197 0.7647 0.1747 0.1576 0.1327 0.1319 

0.50 
Present 20.3055 2.1925 1.6834 0.1744 0.1543 0.1338 0.1086 
Pandit et al.(2008) 19.5512 2.3071 - 0.1691 - 0.1296 - 
Singh et al. (2011) 19.5800 2.4028 - 0.1721 - - - 
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Table 6.  Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz ) at the important points of a 

simply supported square sandwich plate with angle-ply laminated faces ( /+90 / C/ / +90) 
under uniformly distributed load. 

 

h/a Reference 
 w  

(a/2,b/2,0) 
xx  

(a/2,b/2,h/2)
yy  

(a/2,b/2,-h/2)
xz Const 

(0,b/2,0.4h) 
xz Equil      

(0,b/2,0.4h) 
yz Const 

 (a/2,0,-0.4h) 
yz Equi  

(a/2,0,-0.4h)
 = 0˚ 

0.05 

Present (4x4)b 1.6978 1.7096 1.6624 0.4094 0.2726 0.4356 0.2604 
Present(8x8) 1.6958 1.6424 1.5870 0.4223 0.3273 0.4629 0.3158 

Present (12x12) 1.6957 1.6297 1.5691 0.4392 0.3513 0.4974 0.3426 
Present (16x16) 1.6957 1.6265 1.5653 0.4515 0.3663 0.5230 0.3612 
Pagano (1970) 1.7107 1.5851 1.5692 0.3560 0.3560 0.3563 0.3563 

Chakrabarti and 
Sheikh (2004) 

1.7114 1.5988 - 0.3732 - - - 

0.10 
Present (12x12) 2.6168 1.6537 1.5829 0.4142 0.3489 0.4366 0.3397 
Pagano (1970) 2.6295 1.6004 1.5794 0.3496 0.3496 0.3503 0.3503 

Chakrabarti and 
Sheikh (2004) 

2.6296 1.6249 - 0.3612 - - - 

0.20 

 

Present (12x12) 6.3001 1.8111 1.7328 0.3982 0.3455 0.3993 0.3332 
Pagano (1970) 6.2981 1.7093 1.7523 0.3436 0.3436 0.3413 0.3413 

Chakrabarti and 
Sheikh (2004) 

6.2978 1.7792 - 0.3482 - - - 

 = 30˚ 

0.05 

Present (4x4) 1.2422 0.8388 0.8096 0.3989 0.2977 0.4073 0.2409 
Present (8x8) 1.2435 0.8024 0.7738 0.4177 0.3217 0.4390 0.3078 

Present (12x12) 1.2445 0.7986 0.7670 0.4430 0.3446 0.4778 0.3307 
Present (16x16) 1.2450 0.7985 0.7666 0.4637 0.3592 0.5097 0.3480 
Chakrabarti and 
Sheikh (2004) 

1.2362 0.7653 - 0.3603 - - - 

0.10 
Present (12x12) 2.2322 0.9290 0.8840 0.4280 0.3275 0.4409 0.3200 
Chakrabarti and 
Sheikh (2004) 

2.2237 0.8882 - 0.3659 - - - 

0.20 
Present (12x12) 5.9579 1.1733 1.1074 0.4376 0.3064 0.4321 0.2951 
Chakrabarti and 
Sheikh (2004) 

5.9463 1.1165 - 0.3762 - - - 

 = 45˚ 

0.05 

Present (4x4) 1.0790 0.4667 0.4408 0.3722 0.2727 0.3908 0.2537 
Present (8x8) 1.0772 0.4482 0.4247 0.4051 0.3088 0.4400 0.2939 

Present (12x12) 1.0771 0.4475 0.4224 0.4369 0.3289 0.4906 0.3164 
Present (16x16) 1.0773 0.4479 0.4228 0.4621 0.3419 0.5309 0.3335 
Chakrabarti and 
Sheikh (2004) 

1.0615 0.4247 - 0.2197 - - - 

0.10 
Present (12x12) 1.9950 0.4698 0.4422 0.4445 0.3375 0.4592 0.3232 
Chakrabarti and 
Sheikh (2004) 

1.9764 0.4444 - 0.2203 - - - 

0.20 
Present (12x12) 5.6329 0.5755 0.5408 0.4612 0.3399 0.4484 0.3187 
Chakrabarti and 
Sheikh (2004) 

5.6079 0.5516 - 0.2197 - - - 
 

b Entries inside the parenthesis indicate mesh division  
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3.4. Square sandwich plate (/+90/C//90+) having angle-ply laminated stiff sheets at the two faces 
subjected to uniformly distributed load 

 
 The plate (Fig.3, b/a=1) is simply supported at its for edges and subjected to a uniformly distributed 
load of intensity q. For this plate, the thickness distribution for the core and the individual ply in the laminate 
sheets is identical to that of the plate taken in Problem 3.4. The whole plate is analyzed with mesh size of 
44, 88, 1212, 1616 taking h/a= 0.05, 0.1 and 0.2, and = 0˚, 30˚, 45˚. The values of deflection w at the 
midpoint of the plate (x= a/2, y=a/2 and z=0), the in-plane normal stresses xx  at x= a/2, y=a/2 and z= h/2 of 

the plate and yy  at x= a/2, y=a/2 and z=-h/2 of the plate, the transverse shear stresses xz at the centre of the 

left edge (x=0, y=a/2 and z= 0.4h) of the plate and the transverse shear stresses yz at the centre of the bottom 
edge (x= a/2, y=0 and z=-0.4h) of the plate obtained in the present analysis are presented in Tab.6. The 
present results corresponding to = 0˚ are compared with the 3D elasticity solution, which validates the 
present results up to a certain extent. 
 
3.5. Square sandwich plate (0/90/c/0/90) having angle-ply laminated stiff sheets at the two faces 

subjected to uniformly distributed load 
 
 The skew sandwich plate, as shown in Fig.12 is analyzed with the proposed element taking h/a=0.1 and 
the skew angle α= 0˚, 15˚, 30˚, 45˚ and 60˚. In the present study, the boundary condition at four sides is taken as 
simply supported in one case, while it is clamped in the other case. The thickness distribution of the different 
layer is identical to that used in the previous example. The whole plate is taken in the analysis and carried out 
with mesh sizes (Fig.12) of 44, 88, 1212, 1616 and 2020. As the sides BC and AD (Fig.12) are inclined 
to the global axis system (x-y), the DOF of the nodes on these two lines are transformed to express them in the 
local axis system along (x’-y’) as shown in Fig.12. The transformation is essential for simply supported 

boundaries, which is one of the cases considered in the present problem. The value of w  at the plate center, 

xx  at x= (a + bsin α)/2, y=(bcos α)/2, z=h/2 (Fig.12), and yz  at x=a/2, y=0, z=0.4h obtained in the present 
analysis are presented in Tab.7. For the skew angle (α) of 0˚, the present results are compared with the 3D 
elasticity solution (Pagano, 1970) which shows a good correlation between them and for skew angles (α) of 15˚, 
30˚, 45˚ and 60˚, the results are in good agreement with the results reported by Chakrabarti and Sheikh (2004). 
 

 
 

Fig.12. Rectangular skew plate having a mesh of mn. 
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Table 7. Normalized maximum deflection  w  and stresses ( xx , yy , xz , yz )a at the important points of a skew 

sandwich plate with laminated faces (0/90/C/90/0) under Uniformly Distributed Load (h/a=0.1). 
 

Boundary condition Skew Angle Reference w  xx  yy  yz Const yz Equil 

SSSS 

 

0 

Present (4x4)b 2.6127 1.7548 1.5870 0.3119 0.2570
Present (8x8) 2.6084 1.6909 1.5337 0.3122 0.3070

Present (12x12) 2.6083 1.6818 1.5265 0.3134 0.3266
Present (16x16) 2.6083 1.6788 1.5242 0.3141 0.3370
Pagano (1970) 2.6237 1.6753 1.5086 0.3412 0.3412

Chakrabarti and Sheikh (2004) 2.6235 1.6916 -  0.3562 -

15 

Present (4x4) 2.3841 1.5965 1.5033 0.3026 0.2534
Present (8x8) 2.3825 1.5415 1.4610 0.3044 0.2989

Present (12x12) 2.3831 1.5334 1.4546 0.3063 0.3181
Present (16x16) 2.3834 1.5308 1.4526 0.3073 0.3281
Present (20x20) 2.3836 1.5296 1.4517 0.3077 0.0000

Chakrabarti and Sheikh (2004) 2.3969 1.5402 -  0.2857 -

30 

Present (4x4) 0.0000 0.0000 0.0000 0.0000 0.0000
Present (8x8) 1.7954 1.1430 1.2532 0.2735 0.2643

Present (12x12) 1.7978 1.1369 1.2440 0.2771 0.2841
Present (16x16) 1.7992 1.1351 1.2419 0.2784 0.2937
Present (20x20) 1.8001 1.1345 1.2413 0.2789 0.2994

Chakrabarti and Sheikh (2004) 1.8100 1.1397 - 0.1727 -

45 

Present (4x4) 0.0000 0.0000 0.0000 0.0000 0.0000
Present (8x8) 1.0879 0.6556 0.8957 0.2379 0.2477

Present (12x12) 1.0919 0.6529 0.9217 0.2413 0.2556
Present (16x16) 1.0941 0.6523 0.9271 0.2423 0.2555
Present (20x20) 1.0956 0.6523 0.9260 0.2424 0.2569

Chakrabarti and Sheikh (2004) 1.1026 0.6532 -  0.1050 -

60 

Present (4x4) 0.0000 0.0000 0.0000 0.0000 0.0000
Present (8x8) 0.4995 0.2809 0.4339 0.1716 0.1879

Present (12x12) 0.5021 0.2777 0.4600 0.1725 0.1576
Present (16x16) 0.5039 0.2777 0.4822 0.1721 0.1752
Present (20x20) 0.5051 0.2780 0.4994 0.1713 0.1774

Chakrabarti and Sheikh (2004) 0.5094 0.2817 - 0.1605 -

CCCC 

 

0 
Present (4x4)b 1.5330 0.7808 0.6993 0.6942 0.2533
Present (8x8) 1.4955 0.6149 0.5527 0.8416 0.2874

Present (12x12) 1.4956 0.6020 0.5426 0.9549 0.2916
Present (16x16) 1.4958 0.5990 0.5400 1.0238 0.2890

Chakrabarti and Sheikh (2004)] 1.4741 0.6080 -  0.3297 -

15 

Present (4x4) 1.4435 0.7373 0.6763 0.6754 0.2577
Present (8x8) 1.4080 0.5802 0.5363 0.8219 0.2863

Present (12x12) 1.4081 0.5685 0.5269 0.9301 0.2866
Present (16x16) 1.4082 0.5657 0.5245 0.9947 0.2822
Present (20x20) 1.4083 0.5643 0.5234 1.0340 0.2771

Chakrabarti and Sheikh (2004) 1.3859 0.5705 - 0.2743 -

30 

Present (4x4) 1.1889 0.6167 0.6088 0.6146 0.2588
Present (8x8) 1.1585 0.4840 0.4815 0.7543 0.2695

Present (12x12) 1.1584 0.4750 0.4737 0.8460 0.2630
Present (16x16) 1.1585 0.4725 0.4720 0.8975 0.2555
Present (20x20) 1.1586 0.4714 0.4713 0.9270 0.2488

Chakrabarti and Sheikh (2004) 1.1412 0.4754 -  0.1653 -

45 

Present (4x4) 0.8215 0.4425 0.4957 0.5040 0.2251
Present (8x8) 0.7985 0.3474 0.3852 0.6245 0.2202

Present (12x12) 0.7980 0.3400 0.3794 0.6871 0.2091
Present (16x16) 0.7980 0.3379 0.3778 0.7178 0.2000
Present (20x20) 0.7980 0.3370 0.3772 0.7329 0.1932

Chakrabarti and Sheikh (2004) 0.7831 0.3396 -  0.1246 -

60 

Present (4x4) 0.4305 0.2503 0.3194 0.3614 0.1531
Present (8x8) 0.4168 0.1989 0.2594 0.4409 0.1395

Present (12x12) 0.4157 0.1917 0.2568 0.4673 0.1284
Present (16x16) 0.4155 0.1898 0.2558 0.4760 0.1223
Present (20x20) 0.4154 0.1891 0.2552 0.4780 0.1184

Chakrabarti and Sheikh (2004) 0.4031 0.1641 - 0.1641 -
b Entries inside the parenthesis indicate mesh division 
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4. Conclusion 
 

 In this paper an improved C0 plate finite element (FE) model has been developed for the static analysis 
of a laminated soft core sandwich plate based on the refined higher order shear deformation theory (RHSDT) 
with a least square error (LSE) method to accurately calculate the deflections as well as stresses for different 
problems of composite and sandwich laminates. The proposed analysis is done in two stages. The FE model 
based on the RHSDT is used first which calculates the deflections and in-plane stresses more accurately than 
any other existing 2D plate theory. The LSE method is then utilized to predict the transverse shear stresses 
accurately from the results of deflections and in-plane stresses obtained by the FE analysis based on the 
RHSDT at the first stage of the analysis. It is also interesting to note that the displacement fields and the 
corresponding stress fields used in the RHSDT and in the LSE method used in the proposed combined model 
perfectly matches with each other which is not so in the case of the combination of the HSDT with LSE 
method. Therefore, the proposed combined model may be recommended as the most efficient 2D method to 
calculate the deflections as well as stresses (in-plane and transverse) accurately for all types of composites and 
sandwich laminates. 
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Appendix A 
 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
1 11 31 iu iu jl jli 4 1 nu 3 j 1

i 1 j 1

b 1 A z A z A z z H z z A z z H z z
 

  
 

           , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
2 12 32 iu iu jl jli 4 2 nu 3 j 2

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
3 13 33 iu iu jl jli 4 3 nu 3 j 3

i 1 j 1

b z A z A z A z z H z z A z z H z z
 

  
 

           , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
4 14 34 iu iu jl jli 4 4 nu 3 j 4

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
5 15 35 iu iu jl jli 4 5 nu 3 j 5

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
6 16 36 iu iu jl jli 4 6 nu 3 j 6

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
7 17 37 iu iu jl jli 4 7 nu 3 j 7

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 

 

     , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
8 18 38 iu iu jl jli 4 8 nu 3 j 8

i 1 j 1

b A z A z A z z H z z A z z H z z
 

  
 

          , 
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    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
1 21 41 iu iu jl jlnu nl 2 i 1 2nu nl 1 j 1

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
2 22 42 iu iu jl jlnu nl 2 i 2 2nu nl 1 j 2

i 1 j 1

c 1 A z A z A z z H z z A z z H z z
 

     
 

           , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
3 23 43 iu iu jl jlnu nl 2 i 3 2nu nl 1 j 3

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          , 

 

              , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
4 24 44 iu iu jl jlnu nl 2 i 4 2nu nl 1 j 4

i 1 j 1

c z A z A z A z z H z z A z z H z z
 

     
 

           , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
5 25 45 iu iu jl jlnu nl 2 i 5 2nu nl 1 j 5

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
6 26 46 iu iu jl jlnu nl 2 i 6 2nu nl 1 j 6

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
7 27 47 iu iu jl jlnu nl 2 i 7 2nu nl 1 j 7

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          , 

 

    , ,( ) ( ) ( ) ( )
nu 1 nl 1

2 3
8 28 48 iu iu jl jlnu nl 2 i 8 2nu nl 1 j 8

i 1 j 1

c A z A z A z z H z z A z z H z z
 

     
 

          . 

 

Appendix B 
 
 Elements of matrix H, 
 

 [ ]

1 2

1 2

2 1 3

1 1 2 2

1 2 3 4 5 6 7 8 2

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0 0 b 0 b 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c 0 c 0

0 0 d 0 0 0 0 d 0 0 d 0 0 0 0 0
H

0 0 0 0 0 0 0 0 0 0 0 c b c b 0

a a 0 a a a a 0 a a 0 0 0 0 0 l

e e 0 e e e e 0 e e 0 0 0 0 0 0






 





 

         

3 4 5 6 7 8

3 4 5 6 7 8

3 3 4 4 5 5 6 6 7 7 8 8

1 3

2 1 3

0 b 0 b 0 b 0 b 0 0 0 b 0 b 0 0 0

0 0 c 0 c 0 c 0 c 0 0 0 c 0 c 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 c b c b c b c b 0 0 c b c b 0 0

0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 l 0

l 0 0 0 0 0 0 0 0 0 l 0 0 0 0 0 l










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where  

  1
1

b
a

z





,    2
2

b
a

z





,    3

3
b

a
z





,    4
4

b
a

z





,    5

5
b

a
z





,    6
6

b
a

z





,  

 

  7
7

b
a

z





,   8
8

b
a

z





,    1

1
l

d
z





,    2
2

l
d

z





,    3
3

l
d

z





,    1
1

c
e

z





,     

 

  2
2

c
e

z





,    3
3

c
e

z





,    4
4

c
e

z





,    5
5

c
e

z





,    6
6

c
e

z





,    7
7

c
e

z





,    8
8

c
e

z





. 

 
Nomenclature 
 
                              a – dimension of the plate along x - axis 
                           [B] – strain-displacement matrix (derivative of shape functions) 
                              b – dimension of the plate along y - axis 
                             C – core layer in a sandwich structure 
                          [D] – rigidity matrix 
                            E1 – Young’s modulus in the major principal material direction of the lamina 
                            E2 – Young’s modulus in the transverse  material direction of the lamina 
                            E3 – Young’s modulus in the transverse material direction (Per. to plane) of the lamina 
                              f – face/stiff layer in a sandwich structure 
                          G12 – in-plane shear modulus 
                   G13, G23 – out of plane shear moduli 
      H(z-zi), H(-z+zj) – heavy side unit step functions 
                             h – overall thickness of the structure 
                             hc – thickness of the core in a sandwich structure 
                             hf – thickness of each face in a sandwich structure 
                             hu – thickness of upper layers 
                             hl – thickness of lower layers 
                          [K] – global stiffness matrix 
                         [Ke] – element stiffness matrix 
                     l1, l2, l3 – Lagrangian interpolation functions 
                          [N] – shape function matrix 
                             nl – number of layers below the mid plane of the laminated structure 
                             nu – number of layers above the mid plane of the laminated structure 
                         {P} – global load vector 
                        {Pe} – element load vector 
                        [ ]kQ  – rigidity matrix of k-th lamina 

                              q – intensity of transverse loading 
                        U, V – in-plane displacement fields in x and y directions respectively 
                           Us – strain energy 
                             u0 – in-plane displacement along x- direction at the mid surface of laminated structure 
                        uu, ul – in-plane displacement along x- direction at the top of the laminated structure 
                             v0 – in-plane displacement along y- direction at the mid surface of laminated structure 
                        vu, vl – in-plane displacement along y- direction at the top of the laminated structure 
                            W – transverse displacement field 
                         Wext. – work done by external transverse load 
                          W,x – first order derivative of transverse displacement  
                 wu, w0, wl – transverse displacement at the top layer, middle layer and bottom layer of the core 

respectively  
                          x, y – Cartesian co-ordinates/plane 
                              z – thickness co-ordinate/transverse direction 
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     , , ,j ji i
xu yu xl yl     – change in the slope of i-th/j-th interface in the direction x or y corresponding to upper      

and lower layer respectively 
                             – strain vector at the mid plane of the plate 

                             – strain vector at any point of the plate 

                   xx , yy  – in-plane normal strain 

                          zz  – transverse normal strain 

                          xy  – in-plane shear strain 

                  xz , yz  – transverse shear strain 

                            – global displacement vector 

                          {δ} – elemental displacement vector 
                        {δ}i  – displacement vector corresponding to i-th node 
                 12 , 21  – in-plane major  and minor Poission’s ratios 

                 13 , 31  – out of plane (x-z) major and minor Poisson’s ratios 

                 23 , 32  – out of plane (y-z) major and minor Poisson’s ratios 

                               – fiber orientation angle with respect to the principal material axis 
                           x  – rotation about y- axis at mid plane of the plate 

                           y  – rotation about x- axis at mid plane of the plate 

                           i  – mass density of i-th layer 

                           c  – mass density of core layer in a sandwich plate 

                          f  – mass density of face/stiff layer in a sandwich plate 

                             – stress vector at any point of the plate 

                 xx , yy  – in-plane normal stresses 

                          zz  – transverse normal stress 

                          xy  – in-plane shear stress 

                   xz , yz  – transverse shear stress 

                  i
xz , i

yz  – transverse shear stresses at the i-th layer interface 

                             – natural frequency 
 
Subscript 
 
                             C – core 
                               f – face  
                           i , j – counters 
                               l – lower  
                             m – counter  
                              u – upper 
                              x – x- direction 
                              y – y- direction 
                      12, 21 – plane directions 
          13, 31, 23, 32 – transverse directions 
 
Superscript 
 
                               i – layer/interface 
                               j – layer/interface 
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