PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribosynthesis of friction films and their influence on the functional properties of copper-based antifriction composites for printing machines

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is devoted to research of the tribosynthesis mechanism of antifriction films and their influence on the functional properties of antifriction composites based on copper alloyed with nickel and molybdenum with the CaF2 solid lubricant additions for operation at rotation speeds of 3,000–7,000 rph and increased loads of 3.0–5.0 MPa in air. Studies have shown that antifriction films are complex, dynamically changing formations on the surfaces of the composite and counterface, developing according to the bifurcation mechanism. The antifriction layer is decisive in the formation of the friction pair's tribological high-level properties, which provide the self-lubrication mode of the friction unit. The formation and permanent presence of the anti-seize film is associated with a balanced wear rate of the film and its constant formation again on these worn areas at rotation speeds of up to 7,000 rph and loads of up to 5.0 MPa. Due to the steady self-lubrication mechanism, the copper-based composite has significant advantages over cast bronze CuSn5ZnPb, which can only work with liquid lubrication in the friction units of printing machines. The performed studies make it possible to choose rational modes for operation of new high-speed antifriction Cu-composites based on the friction films analysis, predicting their high functional properties.
Wydawca
Rocznik
Strony
147--157
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 27 Wyspianskiego str., 50-370 Wroclaw, Poland
autor
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy ave., 03057 Kyiv, Ukraine
autor
  • Department of Lightweight Elements Engineering, Foundry and Automation, Wroclaw University of Science and Technology, 27 Wyspianskiego str., 50-370 Wroclaw, Poland
autor
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy ave., 03057 Kyiv, Ukraine
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 27 Wyspianskiego str., 50-370 Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 27 Wyspianskiego str., 50-370 Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 27 Wyspianskiego str., 50-370 Wroclaw, Poland
Bibliografia
  • [1] Neale MJ. The tribology handbook. 2nd ed. Elsevier Ltd. All rights reserved, editor. Oxford: Butterworth-Heinemann; 1996. https://doi.org/10.1016/B978-0-7506-1198-5.X5000-0.
  • [2] Simmons CH, Maguire DE, Phelps N. 35 - Bearings and applied technology. In: Simmons CH, Maguire DE, Phelps NBTM of ED. 5th ed. Oxford: Butterworth-Heinemann; 2020. p. 519–45. https://doi.org/10.1016/B978-0-12-818482-0.00035-9.
  • [3] Guangrong H XT. Copper-based alloy sliding-bearing material and preparation method thereof. Patent. China; CN103602849A, 2016. https://patents.google.com/patent/CN103602849A/en.
  • [4] Samal P, Newkirk J. Powder Metallurgy. ASM International; 2015. https://doi.org/10.31399/asm.hb.v07.9781627081757.
  • [5] Liu Q, Castillo-Rodríguez M, Galisteo AJ, Guzmán de Villoria R, Torralba JM. Wear behavior of copper–graphite composites processed by field-assisted hot pressing. J Compos Sci. 2019; 3(1): 29. https://doi.org/10.3390/jcs3010029.
  • [6] Wu G, Xu C, Xiao G, Yi M. Recent progress in self-lubricating ceramic composites. In: Menezes PL, Rohatgi PK, Omrani E, (eds.) Self-lubricating composites. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p. 133–54. https://doi.org/10.1007/978-3-662-56528-5_5.
  • [7] Li R, Yin Y, Zhang K, Song R, Chen Q. Effects of ball milling and load on transfer film formation of copper-based composites. Ind Lubr Tribol. 2022;74(9):1056–62. https://doi.org/10.1108/ILT-04-2022-0119.
  • [8] Hoganas Handbook for Sintered Components: Material and Powder Properties. 1997. https://books.google.pl/books?id=wl9OtAEACAAJ.
  • [9] Stojadinović S, Tadić N, Vasilić R. Plasma electrolytic oxidation of hafnium. Int J Refract Met H. 2017;69:153–7. https://doi.org/10.1016/j.ijrmhm.2017.08.011.
  • [10] Konopka K, Roik TA, Gavrish AP, Vitsuk YY, Mazan T. Effect of CaF2 surface layers on the friction behavior of copper-based composite. Powder Metall Met Ceram. 2012;51(5):363–7. https://doi.org/10.1007/s11106-012-9441-2.
  • [11] Roik TA, Gavrish AP, Kirichok PA, Vitsyuk YY. Effect of secondary structures on the functional properties of high-speed sintered bearings for printing machines. Powder Metall Met Ceram. 2015;54(1):119–27. https://doi.org/10.1007/s11106-015-9688-5.
  • [12] Kurzawa A, Roik T, Gavrysh O, Vitsiuk I, Bocian M, Pyka D, Zajac P, Jamroziak K. Friction mechanism features of the nickel-based composite antifriction materials at high temperatures. Coatings. 2020; 10(5): 454. https://doi.org/10.3390/coatings10050454.
  • [13] Mohan S, Anand A, Arvind Singh R, Jayalakshmi S, Chen X, Konovalov S. Friction and wear study of Fe-Cu-C-CaF2 self-lubricating composite at high speed and high temperature. IOP Conf Ser: Mater Sci Eng. 2020;834(1):12010. https://dx.doi.org/10.1088/1757-899X/834/1/012010.
  • [14] Roik TA, Gavrish OA, Vitsiuk II. The phase composition and structure of the antifriction copper-based composite and their influence on tribological properties. Powder Metall Met Ceram. 2021;60(3):191–7. https://doi.org/10.1007/s11106-021-00227-z.
  • [15] Jamroziak K, Roik T, Gavrish O, Vitsiuk I, Lesiuk G, Correia JAFO, De Jesus A. Improved manufacturing performance of a new antifriction composite parts based on copper. Eng Fail Anal. 2018;91: 225–233. https://doi.org/10.1016/j.engfailanal.2018.04.034.
  • [16] Roik TA, Gavrysh OA, Vitsiuk II, Khmiliarchuk OI. New copper-based composites for heavy-loaded friction units. Powder Metall Met Ceram. 2018;56(9):516–22. https://doi.org/10.1007/s11106-018-9924-x.
  • [17] Roik T, Jamroziak K, Lesiuk G, Gavrish OA, Vitsiuk J. Copper based anti-friction composite material. Patent. Poland: PL237229, 2019. https://api-ewyszukiwarka.pue.uprp.gov.pl/api/collection/7b74f34630c6a414f465b09b7beb407a.
  • [18] Roik TA, Gavrysh OA, Vitsiuk II. Antifriction composite material based on copper. Patent. Ukraine: UA135076 IPC, 2019.
  • [19] John M, Menezes PL. Self-lubricating materials for extreme condition applications. Materials. 2021; 14(19): 5588. https://doi.org/10.3390/ma14195588.
  • [20] Ouyang JH, Li YF, Zhang YZ, Wang YM, Wang YJ. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants. 2022;10(8):177. https://doi.org/10.3390/lubricants10080177.
  • [21] Kyrychok PO, Roik TA, Gavrish AP, Shevchuk AV VY. New composite materials for friction parts of printing machines. Kyiv: NTUU KPI, Ukraine; 2015.
  • [22] Bhushan B. Introduction to tribology. 2nd Editio. John Wiley & Sons, Ltd; 2013. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118403259.
  • [23] Migranov MS, Mukhamadeev VR, Migranov AM, Mukhamadeev IR, Khazgalieva AA. The improvement of the tribotechnical properties of materials and coatings for metal cutting tool. IOP Conf Ser Mater Sci Eng. 2018;447(1):12083. https://dx.doi.org/10.1088/1757-899X/447/1/012083.
  • [24] Purushotham G, Hemanth J. Action of chills on microstructure, mechanical properties of chilled ASTM A 494M grade nickel alloyreinforced with fused SiO2 metal matrix composite. Proc Mat Sci. 2014;5:426–33. https://doi.org/10.1016/j.mspro.2014.07.285.
  • [25] Olaleye K, Roik T, Kurzawa A, Gavrysh O, Vitsiuk I, Jamroziak K. Structure formation in antifriction composites with a nickel matrix and its effect on properties. Materials. 2022;15(9):3404. https://doi.org/10.3390/ma15093404.
  • [26] Avram V, Csaki I, Mates I, Stoica NA, Stoica AM, Semenescu A. The effect of Ca and Mg on the microstructure and tribological properties of YPbSn10 antifriction alloy. Materials. 2022;15(9):3289. https://www.mdpi.com/1996-1944/15/9/3289.
  • [27] Su L, Gao F, Han X, Chen J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol Int. 2015;90:420–5. https://doi.org/10.1016/j.triboint.2015.05.003.
  • [28] Rodrigues ACP, Yonamine T, Albertin E, Sinatora A, Azevedo CRF. Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest. Wear. 2015;330–331:70–8. https://doi.org/10.1016/j.wear.2015.02.006.
  • [29] Berge P, Pomeau Y, Vidal C, Ruelle D, Tuckerman LS. Order within chaos: Towards a deterministic approach to turbulence. New York, Paris SE: Wiley; Hermann; 1984.
  • [30] Bowden FP. Introduction to the discussion: the mechanism of friction. Proc R Soc Lon A. 1952;212:440–9. http://doi.org/10.1098/rspa.1952.0093.
  • [31] Wang Z. A universal bifurcation mechanism arising from progressive hydroelastic waves. Theor Appl Mech Lett. 2022;12(1):100315. https://doi.org/10.1016/j.taml.2021.100315.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e220cd71-b820-47d5-8772-3dc82d5118e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.