PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Almost sure convergence of the distributional limit theorem for order statistics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Xn, n ≥ 1, be a sequence of independent and identically distributed random variables and Xn,1 ≤ Xn,2 ≤...≤ Xn,n denote the order statistics of X1,…, Xn. For any sequence of integers {kn} with 1 ≤ kn ≤ n and limn→∞min {kn, n − kn + 1} = ∞, if there exist constants an > 0, bn ∈ R and some non-degenerate distribution function G such that (Xn,kn − bn)/ an converges in distribution to G, then with probability one [wzór] = G(x) for all x ∈ C (G), where C (G) is the set of continuity points of G.
Rocznik
Strony
217--228
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, U.S.A.
autor
  • Department of Mathematics and Statistics, University of Minnesota Duluth, Campus Center 140, 1117 University Drive, Duluth, MN 55812, U.S.A.
Bibliografia
  • [1] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference, Academic, 1991.
  • [2] I. Berkes and E. Csáki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (2001), pp. 105-134.
  • [3] I. Berkes, E. Csáki and S. Csörgő, Almost sure limit theorems for the St. Petersburg's game, Statist. Probab. Lett. 45 (1999), pp. 23-30.
  • [4] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), pp. 561-574.
  • [5] S. Cheng, L. Peng and Y. Qi, Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998), pp. 43-50.
  • [6] S. Cheng, L. Peng and Y. Qi, Ergodic behaviour of extreme values, J. Austral. Math. Soc. Ser. A 68 (2000), pp. 170-180.
  • [7] I. Fahrner, An extension of the almost sure max-limit theorem, Statist. Probab. Lett. 49 (2000), pp. 93-103.
  • [8] I. Fahrner, A strong invariance principle for the logarithmic average of sample maxima, Stochastic Process. Appl. 93 (2001), pp. 313-337.
  • [9] I. Fahrner and U. Stadtmüller, On almost sure max-limit theorems, Statist. Probab. Lett. 37 (1998), pp. 229-236.
  • [10] M. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), pp. 201-205.
  • [11] P. Schatte, On strong versions of the centrnl limit theorem, Math. Nachr. 137 (1988), pp, 249-256.
  • [12] P. Schatte, Two remarks on the almost sure central limit theorem, Math. Nachr. 154 (1991), pp. 225-229.
  • [13] P. Schatte, On the central limit theorem with almost sure convergence, Probab. Math. Statist. 11 (2) (1991), pp. 237-246.
  • [14] U. Stadtmüller, Almost sure version of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), pp. 413-426.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e21d2fa2-7af7-47a6-9a83-f4e291ae96bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.