Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Repeated austenitisation and furnace cooling of homogenised 0.16 wt. % carbon steels result in ferrite grain sizes between 27 μm and 24 μm. Similarly, repeated austenitisation and normal-air cooling produces ferrite grain sizes between 17 μm and 12 μm; while repeated austenitisation and forced-air cooling produces a minimum grain size of 9.5 μm. Furnace cooling decomposes the austenite eutectoidally to lamellar pearlite; while normal-air cooling and forced-air cooling after austenitisation cause degen eration of pearlite regions producing grain boundary network as well as cluster of cementite and other carbides. Forced-air cooled samp les provide the highest YS (364 MPa) and UTS (520 MPa); while furnace cooling provides the lowest (290 MPa and 464 MPa) leaving the normal-air cool performance in between. Hardness values depict the role of individual ferrite and pearlite content and the extent of pearlite degeneration occurring after each cyclic treatment.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1141--1152
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
- Research Scholar, Metallurgical and Materials Engineering Department, National Institute of Technology, Durgapur, India
autor
- Metallurgical and Materials Engineering Department, National Institute of Technology, Durgapur, India
Bibliografia
- [1] ASM Handbook – Properties and Selection: Iron, Steels and High Performance Alloys, Vol.1, (10th Ed.) ASM International, Materials Park, OH 44073-0002, 2008.
- [2] M. Thompson, M. Ferry, P. A. Manohar, ISIJ Int. 41, 891-899 (2001).
- [3] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, Mater. Sci. Technol. 18, 47-53 (2002).
- [4] J. H. Ai, T. C. Zhao, H. J. Gao, Y. H. Hu, X. 3. Xie, J. Mater. Proc. Technol. 160, 390-395 (2005).
- [5] P. C. M. Rodrigues, E. V. Pereloma, D. B. Santos, Mater. Sci. Eng. A 283, 136-143 (2000).
- [6] A. B. Cota, R. Barbosa, D. B. Santos, J. Mater. Proc. Technol. 100, 156-162 (2000).
- [7] J. Kang, C. Xie, Mater. Des. 27, 1169-1173 (2006).
- [8] S. Shanmugam, R. D. K. Misra, T. Mannering, D. Panda, G. Jansto, Mat. Sci. Eng. A 437, 436-445 (2006).
- [9] S. Shanmugam, N. K. Ramisetti, R. D. K. Mishra, T. Mannering, D. Panda, S. Jansto, Mater. Sci. Eng. A 460-461, 335-343 (2007).
- [10] Y. Ohmori, R. W. K. Honeycombe, Trans. Iron and Steel Inst. Jpn. 11, 1160-1165 (1971).
- [11] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev, H. J. Fecht, Acta Mater. 51, 5555-5570 (2003).
- [12] R. Song, D. Ponge, D. Raabe, Scr. Mater. 52, 1075-1080 (2005).
- [13] R. Song, D. Ponge, D. Raabe, R. Kaspar, Acta Mater. 53, 845-858 (2005).
- [14] J. R. Yang, C. Y. Huang, C. S. Chiou, ISIJ Int. 35, 1013-1019 (1995).
- [15] E. V. Pereloma, C. Bayley, J. D. Boyd, Mater. Sci. Eng. A 210, 16-24 (1996).
- [16] A. B. Cota, D. B. Santos, Mater. Charact. 44, 291-299 (2000).
- [17] Y. C. Jung, H. Ueno, H. Ohtsubo, K. Nakai, Y. Ohmori, ISIJ Int. 35, 1001-1005 (1995).
- [18] A. Saha, D. K. Mondal, J. Maity, J. Mater. Eng. Perform. 20, 114-119 (2011).
- [19] E. M. Taleff, C. K. Syn, D. R. Lesuer, O. D. Sherby, Metall. Mater. Trans. A 27A, 111-118 (1996).
- [20] A. Saha, D. K. Mondal, K. Biswas, J. Maity, Mater. Sci. Eng. A 5, 465-475 (2012).
- [21] S. Nag, P. Sardar, A. Jain, A. Himanshu, D. K. Mondal, Mater. Sci. Eng. A 597, 253-263 (2014).
- [22] P. Haasen (Ed.), Physical Metallurgy, 1997 Cambridge University Press, UK.
- [23] D. Gaude-Fugarolas, H. K. D. H. Bhadeshia, J. Mat. Sci. 38, 1195-1201 (2003).
- [24] G. R. Speich, A. Szirmae, Trans. Metall. Soc. AIME 245, 1063-1074 (1969).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e216dd15-1db4-4664-8b92-bf49afa42083