PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical and numerical analysis of injection pump (stepped) shaft vibrations using timoshenko theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The free transverse vibrations of shafts with complex geometry are studied using analytical methods and numerical simulations. A methodology is proposed for evaluating the results of a natural transverse vibration analysis as generated by finite element (FE) models of a shaft with compound geometry. The effectiveness of the suggested approach is tested using an arbitrarily chosen model of the injection pump shaft. The required analytical models of the transverse vibrations of stepped shafts are derived based on the Timoshenko thick beam theory. The separation of variables method is used to find the needed solutions to the free vibrations. The eigenvalue problem is formulated and solved by using the FE representation for the shaft and for each shaft-simplified model. The results for these models are discussed and compared. Additionally, the usefulness of the Myklestad–Prohl (MP) method in the field of preliminary analysis of transverse vibration of complex shaft systems is indicated. It is important to note that the solutions proposed in this paper could be useful for engineers dealing with the dynamics of various types of machine shafts with low values of operating speeds.
Rocznik
Strony
215--224
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35 – 959 Rzeszów, Poland
  • ZPU Mirosław Pogoda, ul. Wojska Polskiego 3, 39 – 300 Mielec, Poland
  • Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35 – 959 Rzeszów, Poland
  • ZPU Mirosław Pogoda, ul. Wojska Polskiego 3, 39 – 300 Mielec, Poland
  • AGH University of Science and Technology, WIMiR, Al. A. Mickiewicza 30-B2, 30-059 Kraków, Poland
  • AGH University of Science and Technology, WIMiR, Al. A. Mickiewicza 30-B2, 30-059 Kraków, Poland
autor
  • ZPU Mirosław Pogoda, ul. Wojska Polskiego 3, 39 – 300 Mielec, Poland
  • AGH University of Science and Technology, WIMiR, Al. A. Mickiewicza 30-B2, 30-059 Kraków, Poland
Bibliografia
  • 1. de Silva C. Vibration and Shock Handbook. Taylor & Francis. Boca Raton. 2005.
  • 2. Rao SS, Vibration of Continuous Systems. Wiley. Hoboken. 2007.
  • 3. Ngo VT, Xie D, Xiong Y, Zhang H, Yang Y. Dynamic analysis of a rig shafting vibration based on finite element. Frontiers of Mechanical Engineering. 2013;8:244-251.
  • 4. Noga S. Dynamical analysis of the low – power electrical engine rotor. 10 European Mechanics of Materials Conference (EMMC10). Kazimierz Dolny. June 11-14. 2017:457-465.
  • 5. Noga S, Bogacz R. Free vibration of the Timoshenko beam interact-ing with the Winkler foundation. Symulacja w Badaniach i Rozwoju. 2011;2(4):209-223.
  • 6. Friswell M, Mottershead J. Finite Element Model Updating in Struc-tural Dynamics. Kluwer Academic Publishers. Dordrecht. 1995.
  • 7. Noga S. Analytical and Numerical Problems of Systems with Circular Symmetry Vibrations. Publishing House of Rzeszow University of Technology. Rzeszow. Poland (in Polish). 2015.
  • 8. Lee U, Jang I. Spectral element model for the vibration of a spinning Timoshenko shaft. Journal of Mechanics of Materials and Structures. 2012;7(2):145-164.
  • 9. Shahgholi M, Khadem SE, Bab S. Free vibration analysis of a non-linear slender rotating shaft with simply support conditions. Mecha-nism and Machine Theory. 2014;82:128-140.
  • 10. Kaliski S. Vibration and Waves in Solids. IPPT PAN. Warsaw (in Polish). 1966.
  • 11. Auciello NM. Vibrations of Timoshenko beams on two parameter elastic soil. Engineering Transactions. 2008; 56(3):187-200.
  • 12. Majkut L. Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Me-chanics. 2009;47(1):193-210.
  • 13. Chan KT. Wang XQ. Free vibration of a Timoshenko beam partially loaded with distributed mass. Journal of Sound and Vibration. 1997;206:353-369.
  • 14. Awrejcewicz J, Krysko AV, Pavlov SP, Zhigalov MV, Krysko VA. Chaotic dynamics of size dependent Timoshenko beams with func-tionally graded properties along their thickness. Mechanical Systems and Signal Procesing. 2017;93:415-430.
  • 15. Zhao TY, Cui YS, Pan HG, Yuan HQ, Yang J. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. International Journal of Mechanical Sci-ences. 2021;197:106335.
  • 16. Zhao TY, Cui YS, Wang YQ, Pan HG. Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass. Mechanics of Advanced Materials and Structures. 2021. https://doi.org/10.1080/15376494.2021.1904525.
  • 17. Zhao TY, Jiang LP, Pan HG, Yang J, Kitipornchai S. Coupled free vibration of a functionally graded pre-twisted blade-shaft system rein-forced with graphene nanoplatelets. Composite Structures. 2021; 262:113362.
  • 18. Zhao TY, Jiang LP, Yu YX, Wang YQ. Study on theoretical modeling and mechanical performance of a spinning porous graphene nano-platelet reinforced beam attached with double blades. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2022.2035862; 2022.
  • 19. Awrejcewicz J, Krysko VA, Pavlov SP, Zhigalov MV, Kalutsky LA, Krysko VA. Thermoelastic vibrations of a Timoshenko microbeam based on the modified coupe stress theory. Nonlinear Dynamics. 2020;99:919-943.
  • 20. Qatu MS, Iqbal J. Transverse vibration of a two-segment cross-ply composite shafts with a lumped mass. Composite Structures. 2010;92:1126-1131.
  • 21. Arab SB, Rodrigues JD, Bouaziz S, Haddar M. Dynamic analysis of laminated rotors using a layerwise theory. Composite Structures. 2017;182:335-345.
  • 22. Myklestad NO. A new method of calculating natural modes of cou-pled bending vibration of airplane wings and other types of beams. Journal of Aeronautical Science. 1944;11:153-162.
  • 23. Wu JS, Yang IH. Computer method for torsion and flexure coupled forced vibration of shafting system with damping. Journal of Sound and Vibration. 1995;180. (3):417-435.
  • 24. Yang M, Zhou X, Zhang W, Ye J, Hu Y. A modified transfer matrix method for bending vibration of CFRP/Steel composite transmission shafting. Archive of Applied Mechanics. 2020;90:603-614.
  • 25. Farshidianfar A, Soheili S, Abachizadeh M. Flexural vibration of Timoshenko beams. using distributed lumped modeling technique. Aerospace Mechanics Journal. 2008;4(1):75-84.
  • 26. Soheili S. Abachizadeh M. Flexural vibration of multistep rotating Timoshenko shafts using hybrid modeling and optimization tech-niques. Journal of Vibration and Control. https://doi.org/10.1177/10775463211072406; 2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e21674e9-8811-4f67-9ec9-1dd7294fa780
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.