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Abstract: The free transverse vibrations of shafts with complex geometry are studied using analytical methods and numerical simulations. 
A methodology is proposed for evaluating the results of a natural transverse vibration analysis as generated by finite element (FE) models 
of a shaft with compound geometry. The effectiveness of the suggested approach is tested using an arbitrarily chosen model  
of the injection pump shaft. The required analytical models of the transverse vibrations of stepped shafts are derived based  
on the Timoshenko thick beam theory. The separation of variables method is used to find the needed solutions to the free vibrations.  
The eigenvalue problem is formulated and solved by using the FE representation for the shaft and for each shaft-simplified model.  
The results for these models are discussed and compared. Additionally, the usefulness of the Myklestad–Prohl (MP) method in the field  
of preliminary analysis of transverse vibration of complex shaft systems is indicated. It is important to note that the solutions proposed  
in this paper could be useful for engineers dealing with the dynamics of various types of machine shafts with low values of operating 
speeds. 

Key words: modal analysis, natural vibrations, analytical solutions, Timoshenko beam theory, shaft vibrations 

1. INTRODUCTION 

The progress of modern engineering requires the use of ad-
vanced tools in the field of computer-aided design and computer-
aided engineering calculations at the design stage. This applies in 
particular to devices, assemblies and their individual elements, all 
of which are required to have adequate durability and reliability 
during operation. Such important components of devices include, 
among others, machine shafts [1]. One of the essential factors, 
which could disturb or limit the functioning of devices (e.g., pumps 
and others), is the vibration of the components or assemblies of 
these systems [1,2]. The rapid growth of computer techniques and 
analytical systems based on the finite element method (FEM) 
allows a free vibration analysis of the complex design and geome-
try systems to be conducted [1]. In paper [3], FEM was used to 
analyse lateral vibrations of the drilling rig. Cases of the system 
with and without damping were analysed. In paper [4], transversal 
vibration of a low-power electrical rotor is studied using FEM and 
other analytical and numerical methods. Based on the developed 
finite element (FE) models, the basic dynamic parameters of the 
analysed system are determined. FEM modelling is used in paper 
[5] to analyse transverse vibrations of a Timoshenko beam with an 
elastic foundation composed of two different regions of the Win-
kler type. The developed FE models were used to determine the 
frequencies for which there are no harmonic type of free vibra-
tions. An important aspect is the ability to verify the developed FE 

models of the designed systems. In the case of newly designed 
systems, conducting laboratory tests must have a strong econom-
ic justification. Therefore, it seems justified to conduct research 
allowing for the development of FE model verification methods 
with the lowest possible economic cost. The monograph by 
Friswell and Mottershead [6] discusses the theoretical foundations 
and practical applications of techniques for obtaining numerical 
FE models consistent with the model data in the accepted fre-
quency range (the so-called model updating methods). Cases 
where reference data are obtained from analytical solutions of 
vibrating systems and from measurement experiments were con-
sidered. It is also worth mentioning monograph [1], in which theo-
retical and experimental issues concerning vibrations of systems, 
and the consideration of modern measuring tools and computer 
techniques are discussed. In works [4,5,7], the results of analytical 
solutions (natural frequency values) were used as reference data 
to verify the proposed FE models of discussed systems. A spec-
tral element model for a spinning uniform shaft was developed in 
paper [8], and FEM analysis was used for evaluating the accuracy 
of the proposed model through some example problems. Shahg-
holi et al. [9] discussed the issues of transverse vibrations of a 
slender shaft using analytical methods. In the modelling of the 
studied system, the rotary inertia and gyroscopic effect are con-
sidered. Many studies use the results of theoretical analysis 
based on the Timoshenko beam vibration theory as a source of 
reference data. It is worth mentioning that the Timoshenko beam 
theory allows one to obtain a model that considers all important 
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physical phenomena in one-dimensional continuous systems 
[2,10]. The fundamental vibration theory of the thick (Timoshenko) 
beam is presented in several monographs [2, 10]. In the mono-
graph of Noga [7], one can find an extension of the Timoshenko 
theory into ring systems with an elastic foundation. In paper [11], 
the influence of the two-parameter elastic soil on the dynamic 
behaviour of the Timoshenko beam with a variable cross-section 
was examined in the presence of conservative axial loads, and 
the needed theoretical issues were concisely presented in matrix 
form. In paper [12], the description and solution of the Timoshen-
ko beam free and forced vibrations by using a single equation are 
proposed. Analysis was carried out for various cases of the 
boundary conditions. In article [13], exact frequencies and mode 
shapes were calculated for the Timoshenko beam on different 
boundary supports and partially loaded with a distributed mass 
span. They agree with the experimental data. In article [14], the 
authors effectively developed the Timoshenko theory for the 
vibration problem of the beam with functionally graded properties 
along their thickness. In papers [15, 16], the free vibration behav-
iours of a functionally graded disk-shaft rotor system reinforced 
with graphene nanoplatelets resting on elastic supports are inves-
tigated. In both mentioned works, equations of motion including 
the gyroscopic effect due to rotation are derived by employing the 
Lagrange formalism within the framework of Timoshenko beam 
theory for the shaft and Kirchhoff plate theory for the disk. Addi-
tionally, in article [16], the disk-shaft rotor with eccentric mass was 
included in the investigation. In contrast, in papers [17, 18], the 
free vibration of a rotating, functionally graded pre‐twisted blades‐
shaft assembly reinforced with graphene nanoplatelets was ana-
lytically investigated based on the proposed coupled model. In 
these papers, the governing equations of motion are derived by 
using the Lagrange equation within the framework of the Rayleigh 
beam theory and Euler-Bernoulli beam theory. The work in paper 
[17] refers to the pre-twisted blade-shaft system, while paper [18] 
refers to the pre-twisted double blade-shaft system. In paper [19], 
the authors studied the influence of von Kármán nonlinearity on 
the values of frequency, thermoelastic damping and quality factors 
on Timoshenko beam resonators based on the modified couple 
stress theory. Another research field is the issue of vibrations of 
composite shafts. In work [20], the Bernoulli-Euler beam theory is 
used to achieve the exact solution for the vibration of a cross-ply 
laminated composite drive shaft with an intermediate joint. The 
joint is modelled as a frictionless internal hinge. In paper [21], a 
new multi-layer FE, dedicated for dynamic analysis of rotating 
laminated shafts, is formulated and based on layerwise and shaft 
theories. Another approach found in the literature on the subject 
concerns transfer matrix methods, where one of them is the 
Myklestad-Prohl (MP) method. The idea and usefulness of the MP 
method in the analysis of transverse vibrations of shafts were 
presented for the first time in paper [22]. The MP method was 
effectively used in paper [4] to analyse the transverse vibrations of 
the shaft of a low-power electric engine. In article [23], the ex-
tended transfer matrix method dedicated to the analysis of the 
torsion- and flexure-coupled vibration of a damped multi-degree-
of-freedom shafting system subjected to external excitations is 
utilized. In work [24], the modification of the transfer matrix meth-
od was developed for the analysis of bending vibrations of the 
steel composite transmission shafting system. The needed rela-
tions were obtained based on the lamination theory and the layer-
wise beam theory. The achieved results were successfully verified 
by experimental data and FEM. In paper [25], the flexural vibration 
of Timoshenko beams using a distributed lumped modelling tech-

nique are discussed. Two types of elements are discussed: the 
so-called distributed elements (dedicated to parts of shafts with a 
distributed mass) and lumped elements (dedicated to parts of 
shafts with a concentrated mass). The obtained results are suc-
cessfully verified using other techniques. In article [26], the ap-
proach was expanded for analysis of compound shafts, consider-
ing the gyroscopic effect. The proposed technique was effectively 
employed by the authors for a multistep gas turbine rotor system. 
This paper continues the authors’ research [4,5,7] related to ana-
lytical modelling, FEM simulations and model quality evaluation 
techniques of compound mechanical systems. 

The present paper deals with transverse vibrations of a shaft 
of complex geometry. Analytical methods and numerical simula-
tions were used during studies. The novel methodology for evalu-
ation of results of free transverse vibration analysis as generated 
by the FE models of shafts with complex geometry is presented. 
The required analytical models of the transverse vibrations of 
stepped shafts are developed based on the Timoshenko theory. 
Finally, the concluding remarks are made and the adequate natu-
ral forms of vibrations referring to the appropriate natural frequen-
cies of the systems are shown. 

2. FORMULATION OF THE PROBLEM 

This article discusses the vibration problem of dedicated 
stepped shafts which operate in injection pumps. As can be seen 
in Fig. 1, the shaft has a compound stepped shaft arrangement. 
Additionally, the shaft is hollow within a certain portion of its 
length. This geometric shape is due to the specific structure of the 
injection pump. Because of the proprietary nature of the assembly 
construction, the specifications of the shaft are not given. Due to 
its complexity and usually lower values of the natural frequency 
[1,2,10], the case of bending vibrations of the shaft will be ana-
lysed. 

 

 

Fig. 1. Geometrical model of the system under consideration 

The main goal of this work is to develop a reliable methodolo-
gy for evaluating the results of natural transverse vibration anal-
yses in the assumed frequency range as generated by the devel-
oped FE model of the pertinent shaft. It would be a more prefera-
ble situation to have the results of the experimental research of 
the shaft, but at the conceptual and design stage, access to this 
type of data is typically unrealistic. Therefore, the following meth-
odology for evaluating the results of the natural vibration analyses 
generated from the elaborated FE model of the object is pro-
posed. Based on the generated FE model of the system and for 
the arbitrarily chosen boundary conditions determine the values of 
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the natural frequencies of bending vibrations and the correspond-
ing normal modes in the assumed frequency range. Then, a 
stepped shaft model (the simplified model) with simplified geome-
try should be developed, for which it is possible to derive analyti-
cal equations of bending free vibrations. Because the considered 
system does not meet the criterion of the technical theory of thin 
beam vibrations (the so-called Bernoulli beam theory) [2,10], 
therefore, while developing the equations of free vibrations, the 
Timoshenko beam theory (the so-called thick beam theory) will be 
used [2,10]. Then, for the adopted, simplified model, the FE model 
solution and the exact solution of the analytical model are devel-
oped, and for the previously set boundary conditions, the natural 
frequencies and the corresponding vibration natural forms are 
determined. Achieved from the simplified model, the results 
(which come from the analytical solutions and FEM simulation) 
are compared with the results received from the discussed shaft 
FE model and if necessary, the simplified model is modified to 
obtain satisfactory compliance of the results in terms of the adopt-
ed criterion. 

 

Fig. 2. Geometrical model of the three-stepped simplified shaft 

In this paper, it will be shown that satisfactory results can be 
obtained for the discussed shaft, assuming that the simplified 
shaft is a three-stepped hollow shaft (see Fig. 2). In addition, the 
results of the FE model of the discussed system shaft will be 
verified with a model developed based on the MP method [22]. 
The considerations presented in this paper are performed under 
the assumption that the boundary conditions imposed on the 
analysed systems correspond to the conditions of a cantilever 
beam. Because of the specific geometry of the discussed models 
(see Figs. 1–5 and Tab. 1) and the relatively low value of the 
operating speed (<1,500 rpm), the centrifugal and gyroscopic 
effects of the shaft are omitted. In the authors’ humble opinion, the 
proposed methodology will be useful for engineers dealing with 
the transverse vibration analysis of systems of such type, espe-
cially at the design stage. 

3. THEORETICAL FORMULATION 

The subject of the considerations is a stepped shaft, treated 
as a Timoshenko beam, with continuous segments. It is assumed 
that the beam has three compartments and in the individual com-
partments it is homogeneous with a circular–symmetric cross-
section. Little vibration with no damping is considered. The vibra-
tion equation of the Timoshenko beam with the continuous seg-
ments can be written as follows [2,10]: 

−
𝜕

𝜕𝑥
(𝜅𝐴𝑖𝐺 (

𝜕𝑤𝑖

𝜕𝑥
− 𝜙𝑖)) + 𝜌𝐴𝑖

𝜕2𝑤𝑖

𝜕𝑡2 = 0  

−
𝜕

𝜕𝑥
(𝐸𝐼𝑖

𝜕𝜙

𝜕𝑥
) − 𝜅𝐴𝑖𝐺 (

𝜕𝑤𝑖

𝜕𝑥
− 𝜙𝑖) + 𝜌𝐼𝑖

𝜕2𝜙𝑖

𝜕𝑡2 = 0     (1) 

𝑖 = 1,2,3 (1) 

where 𝑤𝑖 = 𝑤𝑖(𝑥, 𝑡) is the transverse beam displacement, 

𝜑𝑖 = 𝜑𝑖(𝑥, 𝑡) is the rotation of the beam cross section, 

𝑥 and 𝑡 are the coordinate and the time, 𝜅 is the shear correction 

factor, 𝑙1, 𝑙2 and 𝑙3 are the beam dimensions, 𝐴1, 𝐴2 and 𝐴3 are 
the cross-sectional areas of the corresponding compartments of 

the beam, 𝐼1, 𝐼2 and 𝐼3 are the area moments of inertia of cross 

sections of the appropriate compartments of the beam, 𝜌 is the 
mass density, 𝐸 is the Young’s modulus of elasticity and 𝐺 is the 
modulus of elasticity in shear (i.e., Kirchhoff‘s modulus). In Eq. (1), 

𝑖 = 1  for 0 ≤ 𝑥 ≤ 𝑙1, 𝑖 = 2  for 𝑙1 ≤ 𝑥 ≤ 𝑙1 + 𝑙2 and 𝑖 = 3  
for 𝑙1 + 𝑙2 ≤ 𝑥 ≤ 𝑙1 + 𝑙2 + 𝑙3. 

For the cantilever beam case, the appropriate boundary condi-
tions are as follows [2,10]: 

𝑤1(0, 𝑡) = 0, 𝜙1(0, 𝑡) = 0, 
𝜕𝜙3(𝑙1+𝑙2+𝑙3,𝑡)

𝜕𝑥
= 0,  

𝜕𝑤3(𝑙1+𝑙2+𝑙3,𝑡)

𝜕𝑥
− 𝜙3(𝑙1 + 𝑙2 + 𝑙3, 𝑡) = 0.                               (2)                 

In the boundary sections of homogeneous compartments of 
the beam, the compatibility conditions provide the following 

groups of equations [2,10], i.e., for 𝑥 = 𝑙1: 

𝑤1(𝑙1, 𝑡) = 𝑤2(𝑙1, 𝑡),  𝜙1(𝑙1, 𝑡) =

𝜙2(𝑙1, 𝑡),  𝐸𝐼1
𝜕𝜙1(𝑙1,𝑡)

𝜕𝑥
= 𝐸𝐼2

𝜕𝜙2(𝑙1,𝑡)

𝜕𝑥
,            (3) 

𝜅𝐴1𝐺 (
𝜕𝑤1(𝑙1,𝑡)

𝜕𝑥
− 𝜙1(𝑙1, 𝑡)) = 𝜅𝐴2𝐺 (

𝜕𝑤2(𝑙1,𝑡)

𝜕𝑥
− 𝜙2(𝑙1, 𝑡)).      

and for 𝑥 = 𝑙1 + 𝑙2: 

𝑤2(𝑙1 + 𝑙2, 𝑡) = 𝑤3(𝑙1 + 𝑙2, 𝑡), 𝜙2(𝑙1 + 𝑙2, 𝑡)
= 𝜙3(𝑙1 + 𝑙2, 𝑡), 

𝐸𝐼2
𝜕𝜙2(𝑙1+𝑙2,𝑡)

𝜕𝑥
= 𝐸𝐼3

𝜕𝜙3(𝑙1+𝑙2,𝑡)

𝜕𝑥
,         (4) 

𝜅𝐴2𝐺 (
𝜕𝑤2(𝑙1+𝑙2,𝑡)

𝜕𝑥
− 𝜙2(𝑙1 + 𝑙2, 𝑡)) = 𝜅𝐴3𝐺 (

𝜕𝑤3(𝑙1+𝑙2,𝑡)

𝜕𝑥
−

𝜙3(𝑙1 + 𝑙2, 𝑡)).                                   

The first two relations in Eqs (3) and (4) are the continuity 
conditions and the last two are the equilibrium conditions, respec-
tively. 

4. FREE VIBRATION ANALYSIS 

The objective of this section is to determine an analytical solu-
tion for the free vibration of the discussed system. To solve the 
system Eq. (1), the Bernoulli–Fourier method (separation of varia-
bles) can be used. So, the general solution to Eq. (1) takes the 
following form [2,10]: 

𝑤𝑖(𝑥, 𝑡) = 𝑊𝑖(𝑥)𝑇(𝑡), 𝜙𝑖(𝑥, 𝑡) = 𝐹𝑖(𝑥)𝑇(𝑡),  
𝑇(𝑡) = 𝐴 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡) ,  𝑖 = 1,2,3                      (5) 

where 𝜔 is the circular frequency of the discussed system vibra-
tion. After introducing solution (5) to Eq. (1) it can produce the 
following equation: 

𝑊𝑖
″(𝑥) + 𝑎0𝑊𝑖(𝑥) − 𝐹𝑖

′(𝑥) = 0,                                                          
𝐹𝑖

″(𝑥) + 𝑏𝑖𝑊𝑖
′(𝑥) − 𝑐0𝐹𝑖

′(𝑥) = 0,  𝑖 = 1,2,3                   (6)                     

where 

𝑎0 = 𝜔2 𝜌

𝜅𝐺
, 𝑏𝑖 =

𝜅𝐴𝑖𝐺

𝐸𝐼𝑖
, 𝑐𝑖 = 𝜔2 𝜌

𝐸
−

𝜅𝐴𝑖𝐺

𝐸𝐼𝑖
, 𝑖 = 1,2,3        (7) 

and the prime refers to the derivative of the function to 𝑥. By 

eliminating the function 𝐹𝑖(𝑥)(𝑖 = 1,2,3) from Eq. (6), one can 
get equations for transverse displacements 𝑊1(𝑥),𝑊2(𝑥)  and 

𝑊3(𝑥) in the following form: 
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𝑊1
(𝐼𝑉)(𝑥) + (𝑎0 + 𝑏1 + 𝑐1)𝑊1

″(𝑥) + 𝑎0𝑐1𝑊1(𝑥) = 0 

𝑊2
(𝐼𝑉)(𝑥) + (𝑎0 + 𝑏2 + 𝑐2)𝑊2

″(𝑥) + 𝑎0𝑐2𝑊2(𝑥) = 0       (8) 

𝑊3
(𝐼𝑉)(𝑥) + (𝑎0 + 𝑏3 + 𝑐3)𝑊3

″(𝑥) + 𝑎0𝑐3𝑊3(𝑥) = 0                                                             

The boundary conditions (2) in terms of 𝑊𝑖(𝑥) take the fol-
lowing form: 

𝑊1(0) = 0, 𝑊1
‴(0) + (𝑎0 + 𝑏1)𝑊1

′(0) = 0,  
𝑊3

″(𝑙1 + 𝑙2 + 𝑙3) + 𝑎0𝑊3(𝑙1 + 𝑙2 + 𝑙3) = 0,                  (9) 

𝑊3
‴(𝑙1 + 𝑙2 + 𝑙3) + (𝑎0 + 𝑏3 + 𝑐3)𝑊3

′(𝑙1 + 𝑙2 + 𝑙3) = 0                           

And accordingly, the compatibility conditions (3) and (4) at 

𝑥 = 𝑙1 in terms of 𝑊𝑖(𝑥) become: 

 𝑊1(𝑙1) = 𝑊2(𝑙1),   
1

𝑐1
[𝑊1

‴(𝑙1) + (𝑎0 + 𝑏1)𝑊1
′(𝑙1)] =

1

𝑐2
[𝑊2

‴(𝑙1) + (𝑎0 + 𝑏2)𝑊2
′(𝑙1)], 𝐸𝐼1[𝑊1

″(𝑙1) +

𝑎0𝑊1(𝑙1)] = 𝐸𝐼2[𝑊2
″(𝑙1) + 𝑎0𝑊2(𝑙1)],      (10)                                                      

 𝜅𝐴1𝐺[𝑊1
‴(𝑙1) + (𝑎0 + 𝑏1 + 𝑐1)𝑊1

′(𝑙1)] =
𝜅𝐴2𝐺[𝑊2

‴(𝑙1) + (𝑎0 + 𝑏2 + 𝑐2)𝑊2
′(𝑙1)]                      

and at 𝑥 = 𝑙1 + 𝑙2 they take the following form: 

𝑊2(𝑙1 + 𝑙2) = 𝑊3(𝑙1 + 𝑙2),  
1

𝑐2

[𝑊2
‴(𝑙1 + 𝑙2) + (𝑎0 + 𝑏2)𝑊2

′(𝑙1 + 𝑙2)] 

=
1

𝑐3
[𝑊3

‴(𝑙1 + 𝑙2) + (𝑎0 + 𝑏3)𝑊3
′(𝑙1 + 𝑙2)],                    (11) 

 𝐸𝐼2[𝑊2
″(𝑙1 + 𝑙2) + 𝑎0𝑊2(𝑙1 + 𝑙2)]

= 𝐸𝐼3[𝑊3
″(𝑙1 + 𝑙2) + 𝑎0𝑊3(𝑙1 + 𝑙2)], 

𝜅𝐴2𝐺[𝑊2
‴(𝑙1 + 𝑙2) + (𝑎0 + 𝑏2 + 𝑐2)𝑊2

′(𝑙1 + 𝑙2)] =
𝜅𝐴3𝐺[𝑊3

‴(𝑙1 + 𝑙2) + (𝑎0 + 𝑏3 + 𝑐3)𝑊3
′(𝑙1 + 𝑙2)]      

In this article, the case where the natural frequencies are be-
low the critical value is analysed. It gives the following restrictions 
on the value of the frequency range: 

𝜔2 <
𝜅𝐴𝑖𝐺

𝜌𝐼𝑖
,   𝑖 = 1,2,3                                     (12) 

Conditions (12) guarantee the harmonic type of free vibration. 
The general solution for the discussed case can be written as 
[2,10]: 

𝑊𝑖(𝑥) = 𝐷𝑖1 𝑐𝑜𝑠(𝜆𝑖1𝑥) + 𝐷𝑖2 𝑠𝑖𝑛(𝜆𝑖1𝑥) + (13) 

𝐷𝑖3 𝑐𝑜𝑠ℎ(𝜆𝑖2𝑥) + 𝐷𝑖4 𝑠𝑖𝑛ℎ(𝜆𝑖2𝑥) ,  𝑖 = 1,2,3 

where 

2𝜆𝑖1
2 = 𝛼 + √𝛾2 + 𝜂𝑖 , 2𝜆𝑖2

2 = −𝛼 + √𝛾2 + 𝜂𝑖 ,                                                         
𝑖 = 1,2,3  (14) 

and  

𝛼 = 𝜔2𝜌 (
1

𝜅𝐺
+

1

𝐸
) ,  𝛾 = 𝜔2𝜌 (

1

𝐸
−

1

𝜅𝐺
) , 𝜂𝑖 =

4𝜔2𝜌𝐴𝑖

𝐸𝐼𝑖
,   𝑖 = 1,2,3                                                             (15) 

Substituting Eq. (13) into Eqs (10) and (11), the following ma-
trix equations are obtained: 

𝑻1 [

𝐷11

𝐷12

𝐷13

𝐷14

] = 𝑻21 [

𝐷21

𝐷22

𝐷23

𝐷24

]and𝑻22 [

𝐷21

𝐷22

𝐷23

𝐷24

] = 𝑻3 [

𝐷31

𝐷32

𝐷33

𝐷34

]              (16) ( 16 ) 

where 

𝑻1 =

[
 
 
 

𝑐𝑜𝑠(𝜆11𝑙1) 𝑠𝑖𝑛(𝜆11𝑙1) 𝑐𝑜𝑠ℎ(𝜆12𝑙1) 𝑠𝑖𝑛ℎ(𝜆12𝑙1)

𝑐2𝑚211 𝑠𝑖𝑛(𝜆11𝑙1) 𝑐2𝑚221 𝑐𝑜𝑠(𝜆11𝑙1) 𝑐2𝑚21 𝑠𝑖𝑛ℎ(𝜆12𝑙1) 𝑐2𝑚21 𝑐𝑜𝑠ℎ(𝜆12𝑙1)

𝑚311 𝑐𝑜𝑠(𝜆11𝑙1) 𝑚311 𝑠𝑖𝑛(𝜆11𝑙1) 𝑚321 𝑐𝑜𝑠ℎ(𝜆12𝑙1) 𝑚321 𝑠𝑖𝑛ℎ(𝜆12𝑙1)

𝑚411 𝑠𝑖𝑛(𝜆11𝑙1) 𝑚421 𝑐𝑜𝑠(𝜆11𝑙1) 𝑚41 𝑠𝑖𝑛ℎ(𝜆12𝑙1) 𝑚41 𝑐𝑜𝑠ℎ(𝜆12𝑙1) ]
 
 
 

         (17) 

𝑻21 =

[
 
 
 

𝑐𝑜𝑠(𝜆21𝑙1) 𝑠𝑖𝑛(𝜆21𝑙1) 𝑐𝑜𝑠ℎ(𝜆22𝑙1) 𝑠𝑖𝑛ℎ(𝜆22𝑙1)

𝑐1𝑚212 𝑠𝑖𝑛(𝜆21𝑙1) 𝑐1𝑚222 𝑐𝑜𝑠(𝜆21𝑙1) 𝑐1𝑚22 𝑠𝑖𝑛ℎ(𝜆22𝑙1) 𝑐1𝑚22 𝑐𝑜𝑠ℎ(𝜆22𝑙1)

𝑚312 𝑐𝑜𝑠(𝜆21𝑙1) 𝑚312 𝑠𝑖𝑛(𝜆21𝑙1) 𝑚322 𝑐𝑜𝑠ℎ(𝜆22𝑙1) 𝑚322 𝑠𝑖𝑛ℎ(𝜆22𝑙1)

𝑚412 𝑠𝑖𝑛(𝜆21𝑙1) 𝑚422 𝑐𝑜𝑠(𝜆21𝑙1) 𝑚42 𝑠𝑖𝑛ℎ(𝜆22𝑙1) 𝑚42 𝑐𝑜𝑠ℎ(𝜆22𝑙1) ]
 
 
 

    (18) 

𝑻22 =

[
 
 
 

𝑐𝑜𝑠(𝜆21𝑙12) 𝑠𝑖𝑛(𝜆21𝑙12) 𝑐𝑜𝑠ℎ(𝜆22𝑙12) 𝑠𝑖𝑛ℎ(𝜆22𝑙12)

𝑐3𝑚212 𝑠𝑖𝑛(𝜆21𝑙12) 𝑐3𝑚222 𝑐𝑜𝑠(𝜆21𝑙12) 𝑐3𝑚22 𝑠𝑖𝑛ℎ(𝜆22𝑙12) 𝑐3𝑚22 𝑐𝑜𝑠ℎ(𝜆22𝑙12)

𝑚312 𝑐𝑜𝑠(𝜆21𝑙12) 𝑚312 𝑠𝑖𝑛(𝜆21𝑙12) 𝑚322 𝑐𝑜𝑠ℎ(𝜆22𝑙12) 𝑚322 𝑠𝑖𝑛ℎ(𝜆22𝑙12)

𝑚412 𝑠𝑖𝑛(𝜆21𝑙12) 𝑚422 𝑐𝑜𝑠(𝜆21𝑙12) 𝑚42 𝑠𝑖𝑛ℎ(𝜆22𝑙12) 𝑚42 𝑐𝑜𝑠ℎ(𝜆22𝑙12) ]
 
 
 

,       𝑙12 = 𝑙1 + 𝑙2             (19)                     

𝑻3 =

[
 
 
 

𝑐𝑜𝑠(𝜆31𝑙12) 𝑠𝑖𝑛(𝜆31𝑙12) 𝑐𝑜𝑠ℎ(𝜆32𝑙12) 𝑠𝑖𝑛ℎ(𝜆32𝑙12)

𝑐2𝑚213 𝑠𝑖𝑛(𝜆31𝑙12) 𝑐2𝑚223 𝑐𝑜𝑠(𝜆31𝑙12) 𝑐2𝑚23 𝑠𝑖𝑛ℎ(𝜆32𝑙12) 𝑐2𝑚23 𝑐𝑜𝑠ℎ(𝜆32𝑙12)

𝑚313 𝑐𝑜𝑠(𝜆31𝑙12) 𝑚313 𝑠𝑖𝑛(𝜆31𝑙12) 𝑚323 𝑐𝑜𝑠ℎ(𝜆32𝑙12) 𝑚323 𝑠𝑖𝑛ℎ(𝜆32𝑙12)

𝑚413 𝑠𝑖𝑛(𝜆31𝑙12) 𝑚423 𝑐𝑜𝑠(𝜆31𝑙12) 𝑚43 𝑠𝑖𝑛ℎ(𝜆32𝑙12) 𝑚43 𝑐𝑜𝑠ℎ(𝜆32𝑙12) ]
 
 
 

,         𝑙12 = 𝑙1 + 𝑙2              (20)                               

and  

𝑚21𝑖 = 𝜆𝑖1
3 − (𝑎0 + 𝑏𝑖)𝜆𝑖1,  𝑚31𝑖 = 𝐼𝑖(−𝜆𝑖1

2 + 𝑎0),  

𝑚41𝑖 = 𝐴𝑖(𝜆𝑖1
3 − (𝑎0 + 𝑏𝑖 + 𝑐𝑖)𝜆𝑖1), 

𝑚22𝑖 = −𝜆𝑖1
3 + (𝑎0 + 𝑏𝑖)𝜆𝑖1, 𝑚32𝑖 = 𝐼𝑖(𝜆𝑖2

2 + 𝑎0),  

𝑚42𝑖 = 𝐴𝑖(−𝜆𝑖1
3 + (𝑎0 + 𝑏𝑖 + 𝑐𝑖)𝜆𝑖1),                              (21) 

𝑚2𝑖 = 𝜆𝑖2
3 + (𝑎0 + 𝑏𝑖)𝜆𝑖2, 𝑖 = 1,2,3,      

𝑚4𝑖 = 𝐴𝑖(𝜆𝑖2
3 + (𝑎0 + 𝑏𝑖 + 𝑐𝑖)𝜆𝑖2)   

As in paper [13], the boundary conditions can be written as 
follows: 

𝑲1 [

𝐷11

𝐷12

𝐷13

𝐷14

] + 𝑲3 [

𝐷31

𝐷32

𝐷33

𝐷34

] = 0         (22) 

where 

𝑲1 = [

1 0 1 0
0 𝑚221 0 𝑚21

0 0 0 0
0 0 0 0

]        (23) 
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𝑲3 =

[
 
 
 
 

0 0 0 0
0 0 0 0

𝑚313

𝐼3
𝑐𝑜𝑠(𝜆31𝑙13)

𝑚313

𝐼3
𝑠𝑖𝑛(𝜆31𝑙13)

𝑚323

𝐼3
𝑐𝑜𝑠ℎ(𝜆32𝑙13)

𝑚323

𝐼3
𝑠𝑖𝑛ℎ(𝜆32𝑙13)

𝑚413

𝐴3
𝑠𝑖𝑛(𝜆31𝑙13)

𝑚423

𝐴3
𝑐𝑜𝑠(𝜆31𝑙13)

𝑚43

𝐴3
𝑠𝑖𝑛ℎ(𝜆32𝑙13)

𝑚43

𝐴3
𝑐𝑜𝑠ℎ(𝜆32𝑙13) ]

 
 
 
 

,      𝑙13 = 𝑙1 + 𝑙2 + 𝑙3                          (24) 

Using Eq. (16), the coefficient vectors [𝐷11𝐷12𝐷13𝐷14]
𝑇 and 

[𝐷21𝐷22𝐷23𝐷24]
𝑇  can be eliminated to give: 

[

𝐷11

𝐷12

𝐷13

𝐷14

] = 𝑻1
−1𝑻21𝑻22

−1𝑻3 [

𝐷31

𝐷32

𝐷33

𝐷34

]        (25) 

and the boundary condition (22) can be written in the matrix form: 

[𝑲1𝑻1
−1𝑻21𝑻22

−1𝑻3 + 𝑲3] [

𝐷31

𝐷32

𝐷33

𝐷34

] = 0        (26) 

The determinant equation in the natural frequencies is ob-
tained from the condition of nontrivial solution. It yields the secular 
determinant: 

|𝑲1𝑻1
−1𝑻21𝑻22

−1𝑻3 + 𝑲3| = 0        (27) 

where the roots of the determinant Eq. (27) 𝜔 = 𝜔𝑛, (𝑛 =
1,2,3, … ) are the exact natural frequencies. The corresponding 
eigenvectors of Eq. (26) together with Eq. (16) determine the 
eigenfunctions in terms of Eq. (13). The eigenfunctions give the 
normal modes of the cantilever stepped Timoshenko beam. 

5. MYKLESTAD–PROHL METHOD ANALYSIS 

A relatively convenient method of determining the natural fre-
quency and the corresponding normal modes of shafts and beams 
is the MP numerical method [22]. In the initial assumption, it con-
sists of the value of the natural frequency sought, and checking 
whether this value meets the adopted boundary conditions. If not, 
the calculations are repeated for the next value. The shaft (or 
beam) is divided into the so-called calculation points, located at 
the contact points of homogeneous sections of the stepped shaft 
(or beam). At each k – the calculation point, the following quanti-
ties are determined: shaft (beam) transverse displacement Yk, 

deflection angle ψk, bending moment Mk and shear force Tk, 
according to the following equation [22]: 

𝑌𝑘+1 = 𝑌𝑘 + 𝑧𝑘+1𝜓𝑘 +
𝑧𝑘+1
2

2𝐸𝐼𝑘+1
𝑀𝑘 +

𝑧𝑘+1
3

6𝐸𝐼𝑘+1
𝑇𝑘 , 

𝜓𝑘+1 = 𝜓𝑘 +
𝑧𝑘+1

𝐸𝐼𝑘+1
𝑀𝑘 +

𝑧𝑘+1
2

2𝐸𝐼𝑘+1
𝑇𝑘 ,      (28) 

𝑀𝑘+1 = 𝑀𝑘 + 𝑧𝑘+1𝑇𝑘 ,    

𝑇𝑘+1 = 𝑇𝑘 + 𝑚𝑘+1𝜔
2𝑧𝑘+1.        

where zk+1 is the distance between points k and k + 1, Ik+1 is 
the area moment of inertia of the cross section of the shaft (beam) 

between points k and k + 1, 𝐸 is the aforementioned earlier 
Young‘s modulus, mk  is the discrete mass in 𝑘-th point and 𝜔 is 
the assumed natural frequency. Boundary conditions for the dis-
cussed calculation case (cantilever beam) take the following form: 

𝑌0 = 0, 𝜓0 = 0, 𝑀𝑘𝑜 = 0, 𝑇𝑘𝑜 = 0                          (29) 

where ko is the final calculation point. More information on the MP 
method can be found in reference [22]. 

6. FE REPRESENTATIONS 

In this section the FE models of the discussed systems are 
formulated. The free vibration of each of the achieved discrete 
models (FE models of discussed objects) is described by the set 
of independent (decoupled) differential equations, cast in modal 
generalised coordinates through the use of the normal modes of 
the system [1]. The solution to the independent modal equations 
is superimposed to obtain the response of the system. To deter-
mine the eigenpairs (eigenvalue and eigenvector) related to the 
natural frequencies and corresponding normal modes of the dis-
cussed systems, the block Lanczos method is used [1]. The elab-
orated FE models are treated as approximations of the analytical 
models of the considered systems (especially the stepped simpli-
fied shafts). 

 
Fig. 3. FE model of the system under consideration 

The modelling and analysis process are conducted using the 
ANSYS WORKBENCH software. To obtain models with the opti-
mal number of elements, the surfaces resulting from the softening 
of feather edges are ignored in the geometrical models. This is 
addressed specifically for the model of the considered shaft. 
During the mesh generation process of the discussed systems, 
the 10-node tetrahedral element, with three degrees of freedom in 
each node, is applied. Moreover, it is assumed that the maximum 
length of the FE side in each model is ≤3.5 mm. The prepared 
model of the discussed shaft is shown in Fig. 3 and it includes 
52,777 solid elements. The primary geometric dimensions of the 
accepted simplified stepped shaft (diameters: (D1, D2, D3, d1, d2, 
d3) lengths: (l1, l2, l3)) are shown in Fig. 4, and were partially 
taken from the considered system. 

 
Fig. 4. Geometric dimensions of the three-stepped simplified shaft 

The simplified stepped shaft FE models are prepared accord-
ing to the same rules as those used with the FE model of the 
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discussed shaft. The two FE models of the simplified stepped 
shaft were developed with slight dimensional differences. The first 
FE model includes 32,871 FEs and the second model includes 
36,158 elements. The prepared FE simplified models are shown 
in Fig. 5. 

 

 
Fig. 5. FE models of the simplified stepped shaft: (a) the first model  
           and (b) the second model 

For each model case, the boundary conditions were assumed 
as for a cantilever beam, fixing the end of the shaft with a larger 
diameter. The difference between the discussed models is defined 
as follows [6]: 

𝜀 = (𝜔𝑓 − 𝜔𝑒) 𝜔𝑒⁄ ⋅ 100%                (30) 

where ωf and ωe are the natural frequencies of the approximate 
and reference models, respectively. Eq. (30) is the so-called 
frequency error [6]. As will be shown later, there is a significant 
similarity in the shape of the respective normal modes of individu-
al models. For this reason, the similarity measure due to the 
normal modes (Modal Assurance Criterion (MAC indica-
tor)).indicator) is not used. 

7. NUMERICAL ANALYSIS 

Numerical solutions for free vibrations analysis of the systems 
considered earlier are determined. This section of the study dis-
cusses and compares only the first six natural frequencies and 
mode shapes for transverse types of vibrations. As mentioned 
earlier, it is not possible to disclose the dimensions of the system 
under consideration, while the geometric dimensions of the three 
simplified stepped shafts are given in Tab. 1 and the needed 
technical data are given in Tab. 2. According to the theory 
[1,2,10], it should be expected that the normal modes of the trans-
verse vibrations of the considered systems will occur within two 
perpendicular planes. In these considerations, the results of the 
vibration analysis of the  pump shaft’s FE model (see Fig. 3) are 
used as the reference data. 

As the considered shaft does not show circular symmetry, one 
should expect the occurrence of slight differences in the shape of 
the same normal modes and in the values of the corresponding 
natural frequencies in the perpendicular planes mentioned. Fig. 6 
shows how the vibration planes are set, where the first vibration 
plane is the plane shown in Fig. 6a, and the second vibration 
plane is the plane shown in Fig. 6b. 

Tab. 1. Parameters characterising the simplified stepped shafts  
             (see Fig. 4) 

No. of 
the 

model 

D1 
(mm) 

D2 
(mm) 

D3 
(mm) 

d1 
(mm) 

d2 
(mm) 

d3 
(mm) 

l1 

(mm) 
l2 

(mm) 
l3 

(mm) 

1 85 37 26 29 20 0 38 139 220 

2 85 37 26 27 18 4 38 139 220 

Tab. 2. Technical data of the systems under study 

E (Pa) ρ (kg/m3) ν κ 

2∙1011 7,850 0.3 0.9 

 

 

Fig. 6. Planes of transverse vibration: (a) the first plane  
            and (b) the second plane 

For example, the term transverse vibration in the first plane 
should be understood to mean that the potential induced trans-
verse displacement may take place in the vertical plane, shown in 
Fig. 6a, while when speaking of the transverse vibration in the 
second plane, it is understood that it is the transverse movement 
in the horizontal plane shown in Fig. 6b. Tab. 3 shows the values 
of the natural frequencies of the shaft under consideration ob-
tained from the FEM simulation. In the second row of Tab. 3, the 
frequency values refer to the vibration modes in the first plane, 
and the frequency values from the third row refer to the vibration 
modes in the second plane. When analysing the obtained results, 
there are slight differences in the frequency values related to 
individual normal modes. As mentioned earlier, the results in 
Tab. 3 are taken as reference data. A visualization of the relevant 
mode shapes is included in the  Fig. 7, 12  

Tab. 3. Natural frequencies of the studied shaft (FEM solution) 

No. of  
frequencies (n) 

1 2 3 4 5 6 

ωn (Hz) 

199.50 
1,135.

49 

2,747.

01 

4,879.

47 

7,504.

79 

10,304

.44 

213.57 
1,133.

79 

2,809.

93 

5,150.

03 

7,533.

49 

10,016

.96 

FEM, finite element method. 
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Tab. 4 presents the values of the natural frequencies obtained 
from the FEM simulation of two FE models of the three simplified 
stepped shafts and their respective frequency errors (30). Due to 
their geometry, simplified models are circularly symmetric sys-
tems. When analysing the obtained results, it can be seen that in 

relation to the frequency ω1 in both cases of simplified models, 
the compliance of the frequency value with the value of the natural 
frequency of the discussed system relating to the natural form of 
vibrations in the second plane is better (<5%). In both the model 

cases, for the frequency ω2 there is a frequency error >10%. 
Thus, it is generally disadvantageous. In other cases, the fre-
quency error has absolute values of ≤7%. In general, it can be 
concluded that the obtained results are satisfactory and there is a 
significant dynamic similarity of the proposed simplified models 
with the reference model in terms of the adopted criterion (the 
frequency error (30)). 

Tab. 4. Result of simulation for the auxiliary models (FEM solution) 

n 

1 2 3 4 5 6 No. of 
auxiliary 
models 

Natural frequencies of the first auxiliary model ωn (Hz) 

1 

219.98 984.15 
2,619.

2 

4,929.

0 

7,370.

7 
10,692 

220.00 984.26 
2,619.

3 

4,929.

4 

7,371.

0 
10,692 

Natural frequencies of the second auxiliary model ωn (Hz) 

2 

226.01 995.2 
2,623.

7 

4,945.

2 

7,397.

1 
10,704 

226.01 995.3 
2,624.

0 

4,945.

5 

7,397.

5 
10,704 

Frequency error of the auxiliary models εn (%) 

1 
10.26 −13.33 −4.65 1.02 −1.79 3.76 

3.01 −13.19 −6.78 −4.28 −2.16 6.74 

2 
13.28 −12.36 −4.49 1.35 −1.44 3.88 

5.83 −12.21 −6.62 −3.97 −1.81 6.86 

FEM, finite element method. 

Tab. 5 presents the values of the natural frequencies obtained 
from the analytical solution of secular Eq. (27) relating to two 
models of the three stepped simplified shafts (the first four rows). 
The last four rows in Tab. 5 contain frequency errors (30) resulting 
from a comparison of the results of analytical solutions (27) with 
the results of the FEM simulation of the discussed system (see 
Tab. 3). When analysing the obtained results, it is noticed that in 

both cases of simplified models, for the frequency ω2, there is a 
frequency error with an absolute value >19%, so it is, of course, 
disadvantageous, but in other cases, the frequency error takes 
absolute values <7.2%. One subject of further research will be to 
determine why there are a relatively large absolute values of the 

frequency error only for the frequency ω2. In general, it can be 
concluded that the obtained results are more satisfactory as in the 
previous case (see Tab. 4) and there is a significant dynamic 
similarity between the proposed simplified analytical models 
(stepped Timoshenko beams) and the reference model in terms of 
the adopted criterion (the frequency error (30)). 

Tab. 5. Result of simulation for the auxiliary models (analytical solutions) 

n 

1 2 3 4 5 6 No. of 
auxiliary 
models 

Natural frequencies of the first auxiliary model ωn (Hz) 

1 

198.57 896.46 
2,841.

6 

4,838.

5 

7,362.

2 
1,0286 

198.57 896.46 
2,841.

6 

4,838.

5 

7,362.

2 
1,0286 

Natural frequencies of the second auxiliary model ωn (Hz) 

2 

206.16 914.51 
2,830.

6 

4,807.

3 

7,353.

6 
1,0195 

206.16 914.51 
2,830.

6 

4,807.

3 

7,353.

6 
1,0195 

Frequency error of the auxiliary models εn (%) 

1 
−0.47 −21.05 3.44 −0.84 −1.9 −0.18 

−7.02 −20.93 1.13 −6.05 −2.27 2.69 

2 
3.33 −19.46 3.04 −1.48 −2.02 −1.06 

−3.47 −19.34 0.74 −6.66 −2.39 1.78 

In Tab. 6 the values of the frequency errors come from com-
parison of the results of analytical solutions (27), with the results 
of the FEM simulation of the auxiliary models (simplified stepped 
shaft models) shown. In this case, the results of analytical solu-
tions (27) of the auxiliary models were taken as reference data. 
When analysing the obtained results, it is noticed that in relation to 
the first simplified model for the first natural frequency (ω1) the 
frequency error is slightly >10%, for the second natural frequency 

(ω2) the frequency error is ≤10%. For the remaining frequencies, 
the frequency error in absolute terms is <7.5%. In the case of the 
second simplified model, for the first two frequencies, the frequen-
cy error is slightly >9%, and for the remaining frequencies, the 
frequency error absolute value is <7%. With regard to the second 
simplified model, the FEM solution shows better compliance in 
terms of the adopted criterion with the analytical solution com-
pared with the results obtained for the first simplified model. Over-
all, it can be said that the results presented in Tab. 6 are satisfac-
tory. 

Tab. 6. Evaluation of the quality of the auxiliary models  
             (analytical and FEM solutions) 

n 

1 2 3 4 5 6 No. of 
auxiliary 
models 

Frequency error of the first auxiliary model εn (%) 

1 
10.78 9.78 −7.83 1.87 0.12 3.95 

10.79 9.79 −7.82 1.88 0.12 3.95 

Frequency error of the second auxiliary model εn (%) 

2 
9.63 8.82 −7.31 2.87 0.59 4.99 

9.63 8.83 −7.3 2.88 0.6 4.99 

FEM, finite element method 
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The results in Tab. 7 concern the comparison of the results 
obtained from the MP method with the results achieved from the 
FE model of the discussed system. In this case as before, the 
results obtained from the FE model of the discussed system (see 
Tab. 3) are taken as reference data. When developing the MP 
model of the shaft, the system was divided into 28 sections with 
lengths ranging from 10 mm to 20 mm, thus obtaining 29 calcula-
tion points. The required mass values at calculation points and the 
area moments of inertia of individual sections between the points 
were determined using the Autodesk Inventor environment. As in 
the previous cases, the boundary conditions were assumed as for 
a cantilever beam (Eq. 29). Relevant calculations were made in 
accordance with Eqs (28) and (29). As the considered shaft is not 
a circular-symmetric system, it should be expected that the trans-
verse vibrations will take place in the first and second planes 
(Fig. 6). For this reason, it was necessary to develop two MP 
models, taking into account the above-mentioned planes of possi-
ble movement. In the computational process, the values of the 
moments of inertia were modified in a certain group of intervals 
and the obtained results are summarized in Tab. 7. The last two 
rows in Tab. 7 contain frequency errors (30) resulting from the 
comparison of the results of MP models solutions (28) with the 
results of the FEM simulation of the discussed system (see 
Tab. 3). The first MP model shows a satisfactory agreement with 
the reference model in terms of the adopted criterion (for each 
natural frequency, the absolute value of the frequency error is 

<8.21%). In the second MP model, for the frequency ω6 there is a 
frequency error with the absolute value of 14.9%, which is unfa-
vourable. The frequency errors for the remaining natural frequen-
cies of the second MP model are at an acceptable level of value. 
Overall, it can be said that the results presented in Tab. 7 are 
satisfactory. 

Tab. 7. Results of simulation by using Myklestad–Prohl models 

n 

1 2 3 4 5 6 No.  
of models 

Natural frequencies of the proposed MP models ωn (Hz) 

1 
200.7

5 

1,157.

2 

2,824.

8 

5,027.

8 

7,997.

5 
1,1225 

2 213.5 
1,182.

4 

2,928.

7 

5,301.

0 

8,342.

5 
1,1660 

Frequency error of the MP models εn (%) 

1 −0.62 −1.88 −2.75 −2.95 −6.16 −8.20 

2 0.03 −4.11 −4.06 −2.85 −9.70 −14.9 

MP, Myklestad–Prohl 

Summarizing the presented results, a satisfactory compliance 
of the proposed simplified models and the Myklestad–Prohl mod-
els with the FE model of the analysed shaft in terms of the adopt-
ed criterion is noticed. Satisfactory compliance with the analytical 
models is particularly important. The obtained results confirm the 
correctness of the proposed verification strategy for FE models of 
machine shaft type systems. 

Graphical visualization of the mode shapes of the system un-
der study can be seen below (Fig 7, 8, 9, 10, 11, 12). 

 

 
Fig. 7. Mode shapes related to the frequencyω1: (a) the first vibration  

           plane and (b) the second vibration plane 

 

 
Fig. 8. Mode shapes related to the frequencyω2: (a) the first vibration  

            plane and (b) the second vibration plane 

 

 
Fig. 9. Mode shapes related to the frequencyω3: (a) the first vibration  

           plane and (b) the second vibration plane 
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Fig. 10. Mode shapes related to the frequency ω4: (a) the first vibration  

             plane and (b) the second vibration plane 

 

 
Fig. 11. Mode shapes related to the frequencyω5: (a) the first vibration  

              plane and (b) the second vibration plane 

 

 
Fig. 12. Mode shapes related to the frequencyω6: (a) the first vibration  

             plane and (b) the second vibration plane 

8. SUMMARY 

This paper presents the studies of the free transverse vibra-
tions of shafts with compound geometry using analytical and 
numerical methods. The methodology for evaluating the results of 
the natural vibration analysis generated from the FE model of the 
shaft is proposed. The required analytical models of the trans-
verse vibrations of the stepped shafts were developed based on 
the Timoshenko beam theory. Needed analytical solutions of the 
free vibrations of the discussed system are determined by using 
the separation of variables method. The effectiveness of the 
suggested approach is tested by using the selected geometrical 
model of the shaft dedicated to work in an injection pump. The 
analytical solutions are compared with the corresponding FEM 
solutions. The proposed analytical and numerical models give 
satisfactory results for a wide range of frequencies. It is remarka-
ble how the analytical approach reduces the calculation time and 
computer memory requirements, and computing power when 
compared with the FEM solutions. The obtained results of the 
analysis indicate the usefulness of the MP method in the field of 
preliminary analysis of transverse vibrations of shaft-type systems 
with complex geometry. Considering the achieved results, it can 
be stated that when structures are analysed at their initial stage of 
development, simplified calculation models can be used for pre-
liminary estimates of dynamic parameters of interest to the user. 
These models make it possible to pre-define the order of magni-
tude of the dynamic parameters of the tested objects of interest 
and provide some information on the quality of FEM solutions. 
The method proposed herein may be useful for dynamic analysis 
of systems such as various types of machine shafts. 
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