PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrospinning synthesis of 3D porous NiO nanorods as anode material for lithium-ion batteries

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three-dimensional NiO nanorods were synthesized as anode material by electrospinning method. X-ray diffraction results revealed that the product sintered at 400 °C had impure metallic nickel phase which, however, became pure NiO phase as the sintering temperature rose. Nevertheless, the nanorods sintered at 400, 500 and 600 °C had similar diameters (∼200 nm).The NiO nanorod material sintered at 500 °C was chip-shaped with a diameter of 200 nm and it exhibited a porous 3D structure. The nanorod sintered at 500 °C had the optimal electrochemical performance. Its discharge specific capacity was 1127 mAh·g−1 initially and remained as high as 400 mAh·g−1 at a current density of 55 mA·g−1 after 50 cycles.
Słowa kluczowe
Wydawca
Rocznik
Strony
227--232
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • School of Metallurgical and Materials Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
autor
  • School of Metallurgical and Materials Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
autor
  • School of Iron and Steel, Soochow University, Suzhou 215021, China
autor
  • School of Iron and Steel, Soochow University, Suzhou 215021, China
Bibliografia
  • [1] Endo M., Kim C., Nishimura K., Fujino T., Miyashita K., Carbon, 38 (2000), 183.
  • [2] Avellaneda D., Nair M.T.S., Nair P.K., Thin Solid Films, 517 (2009), 2500.
  • [3] Hee P.S., Hyoung K.C., Rare Metals, 25 (2006), 184.
  • [4] Ma J.M., Yang J.Q., Jiao L.F., Mao Y.H., Wang T.H., Duan X.C., Lian J.B., Zheng W.J., CrystEng-Comm, 14 (2012), 453.
  • [5] Nam I., Kim N.D., Kim G.P., Park J., Yi J., J. Power Sources, 244 (2013), 56.
  • [6] Lu C.D., Gangyi X., Kawas J.R., Small Ruminant Res., 89 (2010), 102.
  • [7] Ding B., Kimura E., Sato T., Fujita S., Shiratori S., Polymer, 45 (2004), 1895.
  • [8] Tang K., Yu Y., Mu X.K., Peter A, Aken V., Maier J., Electrochem. Commun., 28 (2013), 54.
  • [9] Wang L., Yu Y., Chen P.C., Zhang D.W., Chen C.H., J. Power Sources, 183 (2008), 717.
  • [10] Fan Q., Whittingham M.S., Electrochem. Solid. St., 10 (2007), 48.
  • [11] Ji L.W., Lin Z., Zhou R., Shi Q., Toprakci O., Medford A.J., Electrochim. Acta, 55 (2010), 1605.
  • [12] Cui Q.Z., Dong X.T., Wang J.X., Li M., J. Rare Earth, 26 (2008), 664.
  • [13] Zhang X., Thavasi V., Mhaisalkar S.G., Ramakrishna S., Nanoscale, 4 (2012), 1707.
  • [14] Ding Y.H., Zhang P., Long Z.L., Jiang Y., Xu F., J. Alloy. Compd., 487 (2009), 507.
  • [15] Fan X., Zou L., Zheng Y.P., Kang F.Y., Shen W.C., Electrochem. Solid. St., 12 (2009), 199.
  • [16] Aravindan V., Palaniswamy S.K., Jayaraman S., Wong C.L., Seeram R., Srinivasan M., J. Power Sources, 227 (2013), 284.
  • [17] Shin J.Y., Samuelis D., Maier J., Adv. Funct. Mater., 21 (2011), 3464.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e21643a7-e29d-49c7-890a-841b2aca9c76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.