PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insights into the palaeoenvironments, structure and stratigraphy of the lower Miocene of the Eastern Carpathians Bend Zone, Romania

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ages of several Oligocene to Miocene sedimentary formations from the Eastern Carpathians Bend Zone are poorly constrained due to palaeoenvironmental factors, reworking of fossils, structural complexity and limited exposure. To help overcome these issues, this study integrates calcareous nannoplankton and foraminifera biostratigraphy with isotopic age dating (U-Pb) of volcaniclastic zircons, and sedimentological and structural observations/interpretations. Our study was carried out along an ~6-km-long section made from a series of outcrops along the Bizdidel River which exposes several formations such as the Pucioasa, Fusaru, Vinețișu, Starchiojd and Slon. We show that the Fusaru Formation consists of coarse-grained rocks deposited as confined longitudinal channel successions that migrated laterally. It is bounded by the mud-rich Pucioasa and Vinețișu formations which are lateral equivalents of the Fusaru confined channels deposited as levee/overbank units. These genetically related formations appear to reach younger ages – of the lower to middle Burdigalian based on calcareous nannoplankton and foraminifera biostratigraphy – than previously thought (upper Oligocene to lower Burdigalian). The dominant organic-rich mudstones of the Starchiojd Formation represent pelagites/hemipelagites deposited in anoxic conditions. Their middle Burdigalian age is established by a 17.41 ±0.27 Ma zircon U-Pb age of zircons from the Bătrâni Tuff in the Starchiojd Formation. Based on the similar phenocryst content, zircon U-Pb age and zircon trace element composition, the source of the tuff is suggested to be the 17.3 Ma Eger ignimbrite-forming eruption, which has proximal, near-caldera deposits in the Bükkalja Volcanic Field, Hungary. The mud-rich Slon Formation seems to be related to shelf edge/upslope failure that formed cohesive debrite avalanches resulting from foreland propagation of compression. The Slon Formation extends in this area to at least the upper part of the lower Miocene to middle Miocene. These results highlight the need to revise ages of those parts of the sequence which are poorly constrained or different in other parts of the Carpathian Basin. Such revised ages help to better constrain the understanding of the deformation history of the Carpathians.
Rocznik
Strony
art. no. 2
Opis fizyczny
Bibliogr. 111 poz., fot., tab., wykr.
Twórcy
  • Babeş-Bolyai University, Department of Geology and Research Center for Integrated Geological Studies, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
  • S.N.G.N. Romgaz S.A. Tîrgu-Mureş, 23 Salcâmilor Street, Romania
autor
  • Babeş-Bolyai University, Faculty of Environmental Science and Engineering, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
  • Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
  • Babeş-Bolyai University, Department of Geology and Research Center for Integrated Geological Studies, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
  • Babeş-Bolyai University, Department of Geology and Research Center for Integrated Geological Studies, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
  • Babeş-Bolyai University, Department of Geology and Research Center for Integrated Geological Studies, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
  • Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausius Strasse 25, 8092 Zürich, Switzerland
  • Babeş-Bolyai University, Department of Geology and Research Center for Integrated Geological Studies, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
  • MTA-ELTE Volcanology Research Group, Eötvös Loránd Research Network (ELKH), Pázmány P. sétány 1/C, 1117 Budapest, Hungary
  • Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences [MTA Centre of Excellence], Eötvös Loránd Research Network (ELKH), Budaörsi út 45, 1112 Budapest, Hungary
Bibliografia
  • 1. Abreu, V., Sullivan, M., Pirmez, C., Mohrig, D., 2003. Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20: 631-648.
  • 2. Alexandrescu, G., Brustur, T., Matei, V., Antonescu, A., 1981. On some cinerites from the central and northern part of the Eastern Carpathians (in Romanian). Dări de seamă ale Institutului Geologic şi Geofizică, 68: 69-90.
  • 3. Alexandrescu, G., Frunzescu, D., Brustur, T., 1994. The Vălenii de Munte tuff - petrographic and stratigraphic significance (in Romanian). Studii şi cercetări de geologie, 39: 51-57.
  • 4. Allmendinger, R.W., Cardozo, N., Fisher, D., 2012. Structural Geology Algorithms: Vectors and Tensors in Structural Geology. Cambridge University Press, Cambridge.
  • 5. Amadori, M. L., Belayouni, H., Guerrera, F., Martin-Martin, M., Martin-Rojas, I., Miclăuş, C., Raffaelli, G., 2012. New data on the Vrancea Nappe (Moldavidian Basin, Outer Carpathian Domain, Romania): paleogeographic and geodynamic reconstructions. International Journal of Earth Sciences, 101: 1599-1623.
  • 6. Angelier, J., 1990. Inversion of field data in fault tectonics to obtain the regional stress III: a new rapid direct inversion method by analytical means. Geophysical Journal International, 103: 363-376.
  • 7. Bădescu, D., 2005. Tectono-stratigraphic evolution of the Eastern Carpathians during Mesozoic and Cenozoic (in Romanian). Ed. Economică, Bucharest.
  • 8. Balintoni, I., Balica, C., Ducea, M., Han, H., 2014. Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosciences Frontiers, 5: 395-411.
  • 9. Belayouni, H., Staso, A., Guerrera, F., Martin-Martin, M., Miclăuş, C., Serrano, F., Tramontana, M., 2007. Stratigraphic and geochemical study of the organic-rich black shales in the Tarcău Nappe of the Moldavidian Domain (Carpathian Chain, Romania). International Journal of Earth Sciences, 98: 157-176.
  • 10. Beldean, C., Filipescu, S., Bălc, R., 2012. Paleoenvironmental and biostratigraphic data for the Early Miocene of the North-Western Transylvanian Basin based on planktonic foraminifera. Carpathian Journal of Earth and Environmental Sciences, 7: 171-184.
  • 11. Bercea, R., Bălc, R., Filipescu, S., Zaharia, L., Pop, S., 2016. Middle Miocene micropaleontological and sedimentary aspects within a piggy-back basin, Pucioasa section, Carpathian Bend Zone, Romania. AAPG European Regional Conference and Exhibition, Bucharest, Abstract Book, 50.
  • 12. Boesiger, T.M., De Kaenel, E., Bergen, J.A., Browning, E., Blair, S.A., 2017. Oligocene to Pleistocene taxonomy and stratigraphy of the genus Helicosphaera and other placolith taxa in the circum North Atlantic Basin. Journal of Nannoplankton Research, 37: 145-175.
  • 13. Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam.
  • 14. Bown, P.R., Young, J.R., 1998. Techniques. In: Calcareous Nannofossil Biostratigraphy (ed. P.R. Bown): 16-28. Kluwer, Dordrecht.
  • 15. Brlek, M., Kutterolf, S., Gaynor, S., Kuiper, K., Belak, M., Brcic, V., Holcova, K., Wang, K.L., Bakrac, K., Hajek - Tadesse, V., Misur, I., Horvat, M., Suica, S., Schaltegger, U., 2020. Miocene syn-rift evolution of the North Croatian Basin (Carpathian-Pannonian Region): new constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications. International Journal of Earth Sciences, 109: 2775-2800.
  • 16. Brlek, M., Tapster, S.R., Schindlbeck-Belo, Gaynor, J.S.P., Kutterolf, S., Hauff, F., Georgiev, S.V., Trinajstić, N., Šuica, S., Brčić, V., Wang, K-L., Lee, H-Y., Beier, C., Abersteiner, A.B., Mišur, I., Peytcheva, I., Kukoč, D., Németh, B., Trajanova, M., Balen, D., Guillong, M., Szymanowski, D., Lukács, R., 2023. Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian- Pannonian Region silicic volcanism. Gondwana Research, 116: 40-60.
  • 17. Bucur, I., 1966. Contributions to the understanding of Oligocene breccias from Siriu valley (Buzău Mountains). Dări de seamă ale şedinţelor Institutului de Geologie şi Geofizică, 53: 476-483.
  • 18. Cardozo, N., Allmendinger, R.W., 2013. Spherical projections with OSXStereonet. Computers and Geosciences, 51: 193-205.
  • 19. Carne, R.C., Little, T.A., 2012. Geometry and scale of fault segmentation and deformational bulging along an active oblique-slip fault (Wairarapa fault, New Zealand). GSA Bulletin, 124: 1365-1381.
  • 20. Cicha, I., Rögl, F., Rupp, C., Čtyroka, J., 1998. Oligocene-Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 549: 1-325.
  • 21. Collinson, J., Mountney, N., Thompson, D., 2006. Sedimentary Structures, third edition. Terra Publishing, Harpenden.
  • 22. Conţescu, L., Jipa, D., Mihăilescu, N., Panin, N., 1966. The internal Paleogene flysch of the Eastern Carpathians: paleocurrents, source areas and facies sig nificance. Sedimentology, 7: 307-321.
  • 23. Culver, S.J., 1988. New foraminiferal depth zonation of the northwestern Gulf of Mexico. Palaios, 3: 69-85.
  • 24. Danisik, M., Ponomareva, V., Portnyagin, M., Popov, S., Zastrozhnov, A., Kirkland, C. L., Evans, N. J., Konstantinov, E., Hauff, F., Garbe - Schonberg, D., 2021. Gigantic eruption of a Carpathian volcano marks the largest Miocene transgression of Eastern Paratethys. Earth and Planetary Science Letters, 563: 116890.
  • 25. De Leeuw, A., Filipescu, S., Maţenco, L., Krijgsman, W., Kuiper, K., Stoica, M., 2013. Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): implications for Central Paratethys stratigraphy and emplacement of the Tisza-Dacia plate. Global and Planetary Change, 103: 82-98.
  • 26. De Ruig, J.M., Hubbard, S., 2006. Seismic facies and reservoir characteristic of a deep - marine channel belt in the Molasse foreland basin, Puchkirchen Formation, Austria. AAPG Bulletin, 90: 735-752.
  • 27. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroschnichenko, A., Ruzhich, V., San'kov, V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282: 1-38.
  • 28. Ducea, M.N., Negulescu, E., Profeta, L., Săbău, G., Jianu, D., Petrescu, L., Hoffman, D., 2016. Evolution of the Sibişel Shear Zone (South Carpathians): a study of its type locality near Răşinari (Romania) and tectonic implications. Tectonics, 35: 2131-2157.
  • 29. Duranti, D., Hurst, A., 2004. Fluidization and injection in the deep-water sandstones of the Eocene Alba Formation (UK North Sea). Sedimentology, 51: 503-529.
  • 30. Filipescu, S., Silye, L., 2008. New Paratethyan biozones of planktonic foraminifera described from the Middle Miocene of the Transylvanian Basin. Geologica Carpathica, 59: 537-544.
  • 31. Filipescu, S., Tămaş, D. M., Bercea, R. I., Tămaş, A., Bălc, R., Jabără, D., Bindiu-Haitonic, R., Silye, L., Auer, A., Krezsek, C., Schleder, Z., Săsăran, E., 2020. Biostratigraphic re-evaluation of the lower to middle Miocene successions in the Eastern Carpathians: a case study related to the oil field of the Diapir Fold Zone, Romania. Geological Quarterly, 64 (3): 781-800.
  • 32. Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krezsek, C., Hess, T., 2018. Subsurface and outcrop characteristic of fluvial - dominated deep - lacustrine clinoforms. Sedimentology, 65: 1447-1481.
  • 33. Frunzescu, D., 2013. The Miocene from the Southern part of the Eastern Carpathians. Sulphatic evaporitic megasequences (in Romanian). Oil - Gas University Publishing, Ploieşti.
  • 34. Funk, J., Slatt, R., Pyles, D., 2012. Quantification of static connectivity between deep-water channels and stratigraphically adjacent architectural elements using outcrop analogs. AAPG Bulletin, 96: 277-300.
  • 35. Gooday, A.J., Jorissen, F.J., 2012. Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings. Annual Review of Marine Science, 4: 237-262.
  • 36. Grunert, P., Soliman, A., Coric, C., Scholger, R., Harzhauser, M., Piller, W.E., 2010. Stratigraphic re-evaluation of the stratotype for the regional Ottnangian stage (Central Paratethys, middle Burdigalian). Newsletter on Stratigraphy, 44: 1-16.
  • 37. Hippolyte, J.C., Săndulescu, M., 1996. Paleostress characterization of the ‘Wallachian' phase in its type area, southeastern Carpathians. Tectonophysics, 263: 235-249.
  • 38. Hnylko, O., 2014. Olistostromes in the Miocene salt-bearing folded deposits at the front of the Ukrainian Carpathian orogen. Geological Quarterly, 58 (3): 381-392.
  • 39. Hohenegger, J., Rögl, F., Coric, S., Pervesler, P., Lirer, F., Roetzel, R., Scholger, R., Stingl, K., 2009. The Styrian Basin: key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian Journal of Earth Sciences, 102: 102-132.
  • 40. Hubbard, S.M., Romans, B.W., Graham, S.A., 2008. Deep-water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55: 1333-1359.
  • 41. Hubbard, S.M., De Ruig, J.M., Graham, S.A., 2009. Confined channel - levee complex development in an elongated deep-center: Deep-water Tertiary strata of the Austrian Molasse basin. Marine and Petroleum Geology, 26: 85-112.
  • 42. Jipa, D., 1966. Relationship between longitudinal and transversal currents in the Paleogene of the Tarcău Valley (Eastern Carpathians). Sedimentology, 7: 299-305.
  • 43. Jobe, Z.R., Lowe, D.R., Morris, W.R., 2011. Climbing ripples successions in turbidite systems: depositional environments, sedimentation rates and accumulation times. Sedimentology, 59: 867-898.
  • 44. Joja, T., 1952. The geological structure of the marginal flysch from Suha Mică and Suha Mare valleys (in Romanian). Dări de Seamă ale Institutului Geologic, 36: 12-23.
  • 45. Kamb, W.B., 1959. Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment. Journal of Geophysical Research, 64: 1891-1909.
  • 46. Karátson, D., Biró, T., Portnyagin, M., Kiss, B., Paquette, J.-L., Cseri, Z., Hencz, M., Németh, K., Lahitte, P., Márton, E., Kordos, L., Józsa, S., Hably, L., Müller, S., Szarvas, I., 2022. Large-magnitude (VEI ? 7) ‘wet‘ explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary. Scientific Reports, 12: 9743.
  • 47. Kim, Y.S., Sanderson, D.J., 2006. Structural similarity and variety at the tips in a wide range of strike-slip faults: a review. Terra Nova, 18: 330-344.
  • 48. Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., Báldi, K., Less, G., Nagymarosy, A., Ruman, A., Klučiar, T., Jamrich, M., 2017. The Central Paratethys paleoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9: 75-114.
  • 49. Kraütner, H.G., Bindea, G., 2002. Structural units in the pre - Alpine basement of the Eastern Carpathians. Geologica Carpathica, 53: 143-146.
  • 50. Krézsek, C., Lăpădat, A., Majenco, L., Arnberger, K., Barbu, V., Olaru, R., 2013. Strain partitioning at orogenic contacts during rotation, strike-slip and oblique convergence: Paleogene Early Miocene evolution of the contact between the South Carpathians and Moesia. Global and Planetary Change, 103: 63-81.
  • 51. Leckie, R.M., Olson, H.C., 2003. Foraminifera as proxies of sea-level change on siliciclastic margins. SEPM Special Publication, 75: 5-19.
  • 52. Leever, K.A., Majenco, L., Bertotti, G., Cloetingh, S., Drijkoningen, G., 2006. Late Orogenic vertical movements in the Carpathian Bend Zone - seismic constraints on the transition zone from orogen to foredeep. Basin Research, 18: 521-545.
  • 53. Lowe, D.J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology, 6: 107-153.
  • 54. Lowe, D.J., Pearce, N.J.G., Jorgensen, M.A., Kuehn, S.C., Tryon, C.A., Hayward, C.L., 2017. Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Quaternary Science Reviews, 175: 1-44.
  • 55. Lowe, D.R., 1982. Sediment gravity flows II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
  • 56. Lowe, D.R., Guy, M., 2000. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47: 31-70.
  • 57. Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danišík, M., Buret, Y., Von Quadt, A., Dunkl, I., Fodor, L., Sliwinski, J., Soós, I., Szepesi, J., 2015. Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare - up in the Pannonian Basin, eastern central Europe. Contributions to Mineralogy and Petrology, 170: 52.
  • 58. Lukács, R., Harangi, S., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., Von Quadt, A., Peytcheva, I., Zimmerer, M., 2018. Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews, 179: 1-19.
  • 59. Lukács, R., Guillong, M., Bachmann, O., Fodor, L., Harangi, S., 2021. Tephrostratigraphy and magma evolution based on combined zircon trace element and U-Pb age data: Fingerprinting Miocene silicic pyroclastic rocks in the Pannonian Basin. Frontiers in Earth Science, 9: 615768.
  • 60. Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the 2nd Planktonic Conference, Roma, 1970, 2: 739-785. Edizioni Tecnoscienza.
  • 61. Mărunţeanu, M., 1999. Litho- and biostratigraphy (calcareous nannoplankton) of the Miocene deposits from the Outer Moldavides. Geologica Carpathica, 50: 313-324.
  • 62. Maţenco, L., Bertotti, G., 2000. Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics, 316: 255-286.
  • 63. McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W., Drinkwater, N.J., 2011. Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28: 728-743.
  • 64. Medaris, G., Ducea, M., Ghent, E., Iancu, V., 2003. Conditions and timing of high-pressure Variscan metamorphism in the South Carpathians, Romania. Lithos, 70: 141-161.
  • 65. Melinte-Dobrinescu, M.C., Brustur, T., 2008. Oligocene-Lower Miocene events in Romania. Acta Palaeontologica Romaniae, 6: 203-215.
  • 66. Merten, S., Maţenco, L., Foeken, J.P.T., Stuart, F.M., Andriessen, P.A.M., 2010. From nappe stacking to out - of - sequence postcollisional deformations: Cretaceous to Quaternary exhumation history of the SE Carpathians assessed by low-temperature thermochronology. Tectonics, 29: 1-28.
  • 67. Moscardelli, L., Wood, L., 2008. New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20: 73-98.
  • 68. Mrazec, L., Popescu-Voiteşti, I., 1914. Contributions a la connaissance des nappes du flysch carpathique en Roumanie (in French). Annuaire de l'Institut Geologique de Roumanie, 5: 495-527.
  • 69. Mulder, T., Alexander, J., 2001. The physical character of subaqueous sedimentary density currents and their deposits. Sedimentology, 48: 269-299.
  • 70. Murgeanu, G., Patrulius, D., Gherasi, N., Ghenea, A., Ghenea, C., 1968. Geological map of Romania: scale 1:200,000. Targovişte sheet 35. Geological Institute of Romania, Bucharest.
  • 71. Olteanu, F., 1952. Geological structure between Ursei and Campina region (in Romanian). Dări de Seamă ale Institutului Geologic, 36: 125-139.
  • 72. Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147.
  • 73. Pătruţ, I., 1955. Geology and tectonics of the Vălenii de Munte- Cosminele-Bustenari region (in Romanian). Anuarul Comitetului Geologic, 28: 7-99.
  • 74. Pearce, N.J.G., Westgate, J.A., Gualda, G.A.R., Gatti, E., Muhammad, R.F., 2020. Tephra glass chemistry provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff eruption, northern Sumatra. Journal of Quaternary Science, 35: 256-271.
  • 75. Popescu, G., 1952. Paleogene flysch zone between Buzău Valley and Vărbilăului (short sum-up) (in Romanian). Dări de Seama ale Institutului Geologic, 36: 113-125.
  • 76. Posamentier, H.W., Walker, R.G., 2006. Deep water turbidites and submarine fans. SEPM Special Publication, 84: 397-520.
  • 77. Prentice, M., Pittari, A., Lowe, D.J., Kilgour, G., Kamp, P.J.J., Namaliu, M., 2022. Linking proximal ignimbrites and coeval distal tephra deposits to establish a record of voluminous Early Quaternary (2.4-1.9 Ma) volcanism of the Tauranga Volcanic Centre, New Zealand. Journal of Volcanology and Geothermal Research, 429: 107595.
  • 78. Răbăgia, T., Roban, R.D., Tărăpoancă, M., 2011. Sedimentary records of Paleogene (Eocene to Lowermost Miocene) deformations near the contact between the Carpathian thrust belt and Moesia. Oil & Gas Science and Technology, Revue d'IFP Energies Nouvelles, 66: 931-952.
  • 79. Raffi, I., Wade, B.S., Palike, H., Beu, A.G., Cooper, R., Crundwell, M.P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., Vernyhorova, Y.V., 2020. The Neogene Period. In: Geologic Time Scale 2020 (eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz and G.M. Ogg): 1141-1215. Elsevier BV.
  • 80. Roban, R.D., 2008. Sedimentological analysis of the Paleogene formations in the NE part of the Getic Depression: paleoenvironmental reconstructions (in Romanian). Ph.D. Thesis, Bucharest University, Romania.
  • 81. Rocholl, A., Schaltegger, U., Gilg, H.A., Wijbrans, J., Bohme, M., 2018. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. International Journal of Earth Sciences, 107: 387-407.
  • 82. Rubatto, D., Hermann, J., 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241: 38-61.
  • 83. Rybár, S., Šarinová, K., Sant, K., Kuiper, K. F., Kováčová, M., Vojtko, R., Reiser, M. K., Fordinál, K., Teodoridis, V., Nováková, P., Vlček, V., 2019. New 40Ar/39Ar, fission track and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin: implications for the north-western Central Paratethys region. Geologica Carpathica, 70: 386-404.
  • 84. Sanders, C.A.E., Andriessen, P.A.M., Cloetingh, S.A.P.L., 1999. Life cycle of the East Carpathian orogen: Erosion history of a doubly vergent critical wedge assessed by fission-track thermochronology. Journal of Geophysical Research, 104: 29095-29112.
  • 85. Săndulescu, M., 1984. Romania's Geotectonics (in Romanian). Editura Tehnica, Bucharest.
  • 86. Săndulescu, M., 1988. Cenozoic tectonic history of the Carpathians. AAPG Memoir, 45: 17-25.
  • 87. Săndulescu, M., Popescu, G., Mărunţeanu, M., 1995. Facies and stratigraphy of the Lower and Middle Miocene formations of the Slanic Syncline. Romanian Journal of Stratigraphy, 76: 3-11.
  • 88. Sant, K., Kuiper, K.F., Rybar, S., Grunert, P., Harzhauser, M., Mandic, O., Jamrich, M., Šarinová, K., Hudáčková, N., Krijgsman, W., 2020. 40Ar/39Ar geochronology using high sensitivity mass spectrometry: examples from middle Miocene horizons of the Central Paratethys. Geologica Carpathica, 71: 166-182.
  • 89. Šarinová, K., Rybár, S., Jourdan, F., Frew, A., Mayers, C., Kováčová, M., Lichtman, B., Nováková, P., Kováč, M., 2021. 40Ar/39Ar geochronology of Burdigalian palaeobotanical localities in the central Paratethys (south Slovakia). Geologica Acta, 19: 1-19.
  • 90. Sasvari, A., Baharev, A., 2014. SG2PS (structural geology to postscript converter) - a graphical solution for brittle structural data evaluation and paleostress calculation. Computers and Geosciences, 66: 81-93.
  • 91. Scharer, U., 1984. The effect of initial 230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67: 191-204.
  • 92. Schleder, Z., Tămaş, D.M., Krézsek, C., Arnberger, K., Tulucan, A., 2019. Salt tectonics in the Bend Zone segment of the Carpathian fold and thrust belt, Romania. International Journal of Earth Sciences, 108: 1595-1614.
  • 93. Schmid, S.M., Bernoulli, D., Fugenschuh, B., Maţenco, L., Schefer, S., Schuster, R., Tischler, M., Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geoscience, 101: 139-183.
  • 94. Sliwinski, J.T., Guillong, M., Liebske, C., Dunkl, I., Von Quadt, A., Bachmann, O., 2017. Improved accuracy of LA-ICP-MS U-Pb ages of Cenozoic zircons by alpha dose correction. Chemical Geology, 472: 8-21.
  • 95. Sprague, A.R.G., Garfield, T.R., Goulding, F.J., Beaubouef, R.T., Sullivan, M.D., Rossen, C., Campion, K.M., Sickafoose, D.K., Abreu, V., Schellpeper, M.E., Jensen, G.N., Jennette, D.C., Pirmez, C., Dixon, B.T., Ying, D., Ardill, J., Mohrig, D.C., Porter, M.L., Farrel, M.E., Mellere, D., 2005. Integrated slope channel depositional models: the key to successful prediction of reservoir presence and quality in offshore West Africa. CIPM Cuarto E-Exitep, 1-13.
  • 96. Ștefănescu, M., 1995. Stratigraphy and structure of the Cretaceous and Paleogene flysch deposits between Prahova and lalomiţa valleys. Romanian Journal of Tectonics and Regional Geology, 76: 1-49.
  • 97. Ștefănescu, M., Mărunţeanu, M., 1980. Age of the Doftana Mollase. Dări de Seamă ale Institutului de Geologie şi Geofizica, 65: 169-182.
  • 98. Ștefănescu, M., Ghenea, C., Papaianopol, I., Ghenea, A., Mihăilescu, N., Ivan, T., Munteanu, T., Ștefănescu, M., Munteanu, E., 1988. Geological map of Romania: scale 1:50,000. Pucioasa Sheet. Geological Institute of Romania, Bucharest.
  • 99. Ștefănescu, M., Popescu, I., Ivan, V., Melinte, M., 1993. Aspect of the possibilities of lithological correlation of Oligocene-Lower Miocene deposits of the Buzau Valley. Romanian Journal of Stratigraphy, 75: 89-90.
  • 100. Sylvester, Z., Lowe, D.R., 2004. Textural trends in turbidites and slurry beds from Oligocene flysch of the Eastern Carpathians, Romania. Sedimentology, 51: 945-972.
  • 101. Szabo, B., 2012. Reconstruction of the Paleogene and Neogene marine paleoenvironments in the southernmost part of the Tarcău Nappe (East Carpathians) based on fossil foraminifera assemblages. Ph.D. Thesis, Babeş-Bolyai University, Cluj-Napoca, Romania.
  • 102. Szabo, B., Bercea, R., Iordache, G., Székely, S.F., Petruţa, S., Filipescu, S., Săsăran, E., Bălc, R., 2010. New data on the sedimentary facies and micropaleontology from Pucioasa (Dâmboviţa District). In: 1st International Geosciences Student Conference (eds. A. Rîcu et al.), Bucharest, Abstracts book: 149.
  • 103. Szakács, A., Pécskay, Z., Silye, L., Balogh, K., Vlad, D., Fülop, A., 2012. On the age of the Dej Tuff, Transylvanian Basin (Romania). Geologica Carpathica, 63: 139-148.
  • 104. Talling, P.J., Masson, D.G., Sumner, E.J., Malgesini, G., 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59: 1937-2003.
  • 105. Tămaş, D.M., 2018. Salt tectonics in the Eastern Carpathian Bend Zone, Romania. Ph.D. Thesis, Babeş-Bolyai University, Cluj-Napoca, Romania.
  • 106. Tămaş, A., Tămaş, D.M., Krézsek, C., Schleder, Z., Palladino, G., Bercea, R., 2020. The nature and signifi cance of sand intrusions in a hydrocarbon-rich fold and thrust belt: eastern Carpathians Bend Zone, Romania. Journal of the Geological Society, 177: 343-356.
  • 107. Tinterri, R., Magalhaes, P.M., Tagliafferi, A., Cunha, R.S., 2016. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-Arenacea Formation (northern Italy) and Annot Sandstones (south eastern France). Sedimentary Geology, 344: 382-407.
  • 108. Ustaszewski, K., Schmid, S.M., Fügenschuh, B., Tischler, M., Kissling, E., Spakman, W., 2008. A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss Journal of Geosciences, 101: 273-294.
  • 109. Wade, B., Pearson, P.N., Berggren, W.A., Palike, H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104: 111-142.
  • 110. Young, J.R., Bown, P.R., Lees, J.A., 2017. Nannotax3 website. International Nannoplankton Association. URL: http://www.mokrotaz.org/Nannotax3
  • 111. Zavala, C., Arcuri, M., 2016. Intrabasinal and Extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology, 337: 36-54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e21285ff-e1cb-4aaa-8896-9a75ebe6e733
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.