PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reinforcements in 3D printing concrete structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D printing of concrete structures has had a strong development in recent years, enhanced by the advantages it presents over traditional construction. However, it currently still has some limitations. One of those limitations is to incorporate the reinforcements into the automated 3D printing process. The objective of this work is to present a review of the methods that have been used so far to reinforce the structures. The different methods used will be presented focusing on the reinforcement by the use of fibers. The properties of the fibers, lengths, and percentages of the same used in the mixtures will be analyzed. The results of the different tests will be shown making a comparison between the values obtained from the tests carried out with the printed and molded materials. Finally, the increases in the results of the tests that these fibers provide with respect to the samples without them will be analyzed.
Rocznik
Strony
art. no. e25, 2023
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • GITECO Research Group, Universidad de Cantabria, Av. de los Castros 44, 39005 Santander, Spain
  • GITECO Research Group, Universidad de Cantabria, Av. de los Castros 44, 39005 Santander, Spain
  • GITECO Research Group, Universidad de Cantabria, Av. de los Castros 44, 39005 Santander, Spain
  • GITECO Research Group, Universidad de Cantabria, Av. de los Castros 44, 39005 Santander, Spain
  • GITECO Research Group, Universidad de Cantabria, Av. de los Castros 44, 39005 Santander, Spain
Bibliografia
  • 1. Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B. Particle-bed 3D printing in concrete construction-possibilities and challenges. Cem Concr Res. 2018;112:50-65. https://doi.org/10.1016/j.cemconres.2018.05.018.
  • 2. Cesaretti G, Dini E, de Kestelier X, Colla V, Pambaguian L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014;93:430-50. https://doi.org/10.1016/j.actaastro.2013.07.034.
  • 3. Khoshnevis B, “Automated construction by contour crafting-related robotics and information technologies”. [Online]. 2004. Available from: www.calearth.org.
  • 4. Panda B, Singh GB, Unluer C, Tan MJ. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J Clean Prod. 2019;220:610-9. https://doi.org/10.1016/j.jclepro.2019.02.185.
  • 5. Al Rashid A, Khan SA, Al-Ghamdi SG, Koc M. Additive manufacturing: technology, applications, markets, and opportunities for the built environment. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2020.103268.
  • 6. Hwang D, Khoshnevis B, and Epstein DJ, “Concrete wall fabrication by contour crafting”. [Online]. 2004. Available from: www.contourcrafting.org.
  • 7. Zhang J, Khoshnevis B. Contour crafting process plan optimization part I: single-nozzle case. Int J Ind Syst Eng. 2010;4(1):33-46.
  • 8. Khoshnevis B, et al. Mega-scale fabrication by contour crafting. Int J Ind Syst Eng. 2006;1(3):301-20.
  • 9. Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S., Gibb, A., & Thorpe, T. Development of a viable concrete printing process. Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 665-670. https://doi.org/10.22260/isarc2011/0124.
  • 10. El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: benefits, challenges, and risks. Arch Civ Mech Eng. 2020;20(2):1-25. https://doi.org/10.1007/s43452-020-00038-w.
  • 11. Zhang J, Wang J, Dong S, Yu X, Han B. A review of the current progress and application of 3D printed concrete. Compos Part A Appl Sci Manuf. 2019. https://doi.org/10.1016/j.compositesa.2019.105533.
  • 12. de Schutter G, Lesage K, Mechtcherine V, Nerella VN, Habert G, Agusti-Juan I. Vision of 3D printing with concrete-technical, economic and environmental potentials. Cem Concr Res. 2018;112:25-36. https://doi.org/10.1016/j.cemconres.2018.06.001.
  • 13. Ma GW, Wang L, Ju Y. State-of-the-art of 3D printing technology of cementitious material-An emerging technique for construction. Sci China Technol Sci. 2018;61(4):475-95. https://doi.org/10.1007/s11431-016-9077-7.
  • 14. Bong SH, Nematollahi B, Nazari A, Xia M, Sanjayan J. Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications. Materials. 2019. https://doi.org/10.3390/ma12060902.
  • 15. Panda B, Paul SC, Mohamed NAN, Tay YWD, Tan MJ. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement (Lond). 2018;113:108-16. https://doi.org/10.1016/j.measurement.2017.08.051.
  • 16. Tay YWD, Ting GHA, Qian Y, Panda B, He L, Tan MJ. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14(1):104-13. https://doi.org/10.1080/17452759.2018.1500420.
  • 17. ApisCor. Available from: https://www.apis-cor.com/as-masonry. Accessed 12 Jan 2020.
  • 18. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T. Developments in construction-scale additive manufacturing processes. Autom Constr. 2012;21(1):262-8. https://doi.org/10.1016/j.autcon.2011.06.010.
  • 19. Salet TAM, Ahmed ZY, Bos FP, Laagland HLM. Design of a 3D printed concrete bridge by testing*. Virtual Phys Prototyp. 2018;13(3):222-36. https://doi.org/10.1080/17452759.2018.1476064.
  • 20. Salet TAM, Ahmed ZY, Bos FP, Laagland HLM. 3D printed concrete bridge. In: Proceedings of the international conference on progress in additive manufacturing. 2018. p. 2-9. doi: https://doi.org/10.25341/D4530C.
  • 21. Asprone D, Auricchio F, Menna C, Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Constr Build Mater. 2018;165:218-31. https://doi.org/10.1016/j.conbuildmat.2018.01.018.
  • 22. NC TV. World’s first 3D-printed house that can withstand 8.0-magnitude quake available online: https://www.youtube.com/watch?v=OloOc21_u80. Accessed 12 Jan 2020.
  • 23. Bos FP, Ahmed ZY, Jutinov ER, Salet TAM. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials. 2017. https://doi.org/10.3390/ma10111314.
  • 24. Lim JH, Panda B, Pham QC. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Constr Build Mater. 2018;178:32-41. https://doi.org/10.1016/j.conbuildmat.2018.05.010.
  • 25. Li Z, Wang L, Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.107796.
  • 26. Mechtcherine V, Michel A, Liebscher M, Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study. Materials. 2020. https://doi.org/10.3390/ma13112568.
  • 27. Marchment T, Sanjayan J. Mesh reinforcing method for 3D Concrete Printing. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2019.102992.
  • 28. Inozemtcev A, Duong TQ. Technical and economic efficiency of materials using 3D-printing in construction on the example of high-strength lightweight fiber-reinforced concrete. In: E3S web of conferences, vol. 97. 2019. Les Ulis: EDP Sciences; doi: https://doi.org/10.1051/e3sconf/20199702010.
  • 29. Kreiger EL, Kreiger MA, Case MP. Development of the construction processes for reinforced additively constructed concrete. Addit Manuf. 2019;28:39-49. https://doi.org/10.1016/j.addma.2019.02.015.
  • 30. Garcia de Soto B, et al. Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom Constr. 2018;92:297-311. https://doi.org/10.1016/j.autcon.2018.04.004.
  • 31. Nerella VN, Krause M, Mechtcherine V. Direct printing test for buildability of 3D-printable concrete considering economic viability. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2019.102986.
  • 32. Otto J, Kortmann J, Krause M “Cost calculation of concrete 3D printing [Wirtschaftliche Perspektiven von Beton-3D-Druckverfahren],” Beton- und Stahlbetonbau, vol. 115, no. 8, pp. 586-597, 2020, doi: https://doi.org/10.1002/best.201900087.
  • 33. Han Y, Yang Z, Ding T, Xiao J. Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2020.123884.
  • 34. Abdalla H, Fattah KP, Abdallah M, Tamimi AK. Environmental footprint and economics of a full-scale 3d-printed house. Sustainability (Switzerland). 2021. https://doi.org/10.3390/su132111978.
  • 35. Weng Y, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.121245.
  • 36. Yoris-Nobile AI, et al. Life cycle assessment (LCA) and multicriteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers. J Sustain Cem Based Mater. 2022. https://doi.org/10.1080/21650373.2022.2099479.
  • 37. Zhang D, Yu J, Wu H, Jaworska B, Ellis BR, Li VC. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.107741.
  • 38. Amran M, et al. Fibre-reinforced foamed concretes: a review. Materials. 2020. https://doi.org/10.3390/ma13194323.
  • 39. Slebi-Acevedo CJ, Lastra-Gonzalez P, Pascual-Munoz P, Castro-Fresno D. Mechanical performance of fibers in hot mix asphalt: a review. Constr Build Mater. 2019;200:756-69. https://doi.org/10.1016/j.conbuildmat.2018.12.171.
  • 40. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221-32. https://doi.org/10.1617/s11527-012-9828-z.
  • 41. Soltan DG, Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cem Concr Compos. 2018;90:1-13. https://doi.org/10.1016/j.cemconcomp.2018.03.017.
  • 42. Papachristoforou M, Mitsopoulos V, Stefanidou M. Evaluation of workability parameters in 3D printing concrete. Procedia Struct Integr. 2018;10:155-62. https://doi.org/10.1016/j.prostr.2018.09.023.
  • 43. UNE-EN_196-1. Methods of testing cement - Part 1: determination of strength. AENOR - Asociacion Espanola de Normalizacion y Certificacion, 2018.
  • 44. Nematollahi B, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials. 2018. https://doi.org/10.3390/ma11122352.
  • 45. Nematollahi B, Xia M, Sanjayan J, Vijay P. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer. Mater Sci Forum. 2018;939:155-62. https://doi.org/10.4028/www.scientific.net/MSF.939.155.
  • 46. Al-Qutaifi S, Nazari A, Bagheri A. Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Constr Build Mater. 2018;176:690-9. https://doi.org/10.1016/j.conbuildmat.2018.04.195.
  • 47. Ramezanianpour AA, Esmaeili M, Ghahari SA, Najafi MH. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr Build Mater. 2013;44:411-8. https://doi.org/10.1016/j.conbuildmat.2013.02.076.
  • 48. Yan C, Banthia N. Shrinkage cracking in polyolefin fiber-reinforced concrete. Mater J. 2000;97(4):432-7.
  • 49. Zhu B, Pan J, Nematollahi B, Zhou Z, Zhang Y, Sanjayan J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater Des. 2019. https://doi.org/10.1016/j.matdes.2019.108088.
  • 50. Jo JH, Jo BW, Cho W, Kim JH. Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. Int J Concr Struct Mater. 2020. https://doi.org/10.1186/s40069-019-0388-2.
  • 51. J Yu, CKY Leung “Impact of 3D printing direction on mechanical performance of strain-hardening cementitious composite (SHCC).” RILEM Bookseries, vol 19. Cham: Springer; 2019. pp. 255-265.
  • 52. Jamshaid H, Mishra R. A green material from rock: basalt fiber-a review. J Text Inst. 2016;107(7):923-37. https://doi.org/10.1080/00405000.2015.1071940.
  • 53. Hambach M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos. 2017;79:62-70.
  • 54. Ma G, Li Z, Wang L, Wang F, Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater. 2019;202:770-83. https://doi.org/10.1016/j.conbuildmat.2019.01.008.
  • 55. Bhatnagar A, Tam T. High-performance ballistic fibers and tapes. 2016. https://doi.org/10.1016/B978-0-08-100406-7.00001-5.
  • 56. Tam T, Bhatnagar A. High-performance ballistic fibers and tapes. In: Lightweight ballistic composites. 2016. doi:https://doi.org/10.1016/B978-0-08-100406-7.00001-5.
  • 57. Panda B, Chandra Paul S, Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146-9. https://doi.org/10.1016/j.matlet.2017.07.123.
  • 58. Korniejenko K, et al. Mechanical properties of short fiber-reinforced geopolymers made by casted and 3D printing methods: A comparative study. Materials. 2020. https://doi.org/10.3390/ma13030579.
  • 59. Hambach M, Moller H, Neumann T. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexyral strength. Cem Concr Res. 2016;89:80-6.
  • 60. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119546.
  • 61. Pham L, Tran P, Sanjayan J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118785.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e211d8ab-67cd-4f80-9133-e337e44576f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.