PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative analysis of α-CL-20 polymorphic impurity in ε-CL-20 using Dispersive Raman Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
α-CL-20 polymorphic impurity in ε-CL-20 studies have been carried out using Dispersive Raman Spectroscopy. ε-, β-, α- and γ-CL-20 polymorphs were produced using crystallization methods with sample recovery from the solution being >90%, and chemical purity of about 99%. The polymorphs prepared were characterized using Dispersive Raman Spectroscopy over the Raman shift region of 100-3500 cm-1 using a 514 nm argon ion laser. The experimental studies were supported by ab initio computations performed at B3LYP level using a 6-31+G** basis set. The computed vibrational frequencies of the CL-20 conformers correspond to the ε, β and α or γ-CL-20 polymorphs when compared with the observed frequencies. α-CL-20 shows a distinct feature at 280 cm-1 as compared with those of the ε-CL-20 polymorph. Using Dispersive Raman Spectroscopy, a linear relationship was demonstrated for the absolute peak height and absolute peak area ratio of α-CL-20 versus the weight percent of α-CL-20. This method enables a detection limit of this polymorphic impurity down to 2 wt%.
Rocznik
Strony
419--438
Opis fizyczny
Bibliogr, 29 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
  • Research & Innovation Centre, IIT Madras Research Park, Chennai-600 113, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
Bibliografia
  • [1] Nielsen A.T., Polycyclic Amine Chemistry, in: Chemistry of Energetic Materials, (Olah G.A., Squire D.R., Eds.), Academic Press, San Diego, US, 1991, pp. 95-124.
  • [2] Simpson R.L., Urtiew P.A., Ornellas D.L., Moody G.L., Scribner K.J., Hoffman D.M., CL-20 Performance Exceeds that of HMX and Its Sensitivity is Moderate, Propellants Explos. Pyrotech., 1997, 22, 249-255.
  • [3] Yee R.Y., Nadler M.P., Neilsen A.T., Polymorphic and Thermal Properties of Hexanitrohexaazaisowurtzitane, 1990 JANNAF Prop. Meeting, Anaheim CA, 1990, 204.
  • [4] Russel T.P., Miller P.J., Piermarini G.J., Block S., High Pressure Phase Transition in γ- Hexanitrohexaazaisowurtzitane, J. Phys. Chem., 1992, 96, 5506.
  • [5] Foltz M.F., Coon C.L., Garcia F., Nicholas III A.L., Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane. Part I, Propellants Explos. Pyrotech., 1994, 19, 19-25.
  • [6] Nielsen A.T., Chafin A.P., Christian S.L., Moore D.W., Nadler M.P., Nissan R.A., Vanderah D.J., Synthesis of Polyazapolycyclic Caged Polynitramines, Tetrahedron, 1998, 54, 11793-11812.
  • [7] Gump J., Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature, American Physical Society, 15th APS Topical Conference on Shock Compression of Condensed Matter, 2007, abstract #H7.004.
  • [8] Millar D.I.A., Maynard-Casely H. E., K.K. Annette, Marshall W.G., Pulham C.R., Cumming A.S., Putting the Squeeze on Energetic Materials – Structural Characterization of a High-pressure Phase of CL-20, Cryst. Eng. Comm., 2010, 12, 2524-2527.
  • [9] Hoffman D.M., Void Density Distribution in 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20) Prepared under Various Conditions, Propellants Explos. Pyrotech., 2003, 28, 194-200.
  • [10] Perseen P.-A., Holmberg R., Lee J., Rock Blasting and Explsovies Engineering, CRC press, Baca Raton, FL, 1993.
  • [11] Koehler J., Meyer R., Explosives, 4th ed., VCH, Weinheim, 1993.
  • [12] Coffey C.S., DeVost V.F., Impact Testing of Explosives and Propellants, Propellants, Explos. Pyrotech., 1995, 20, 105.
  • [13] Hamilton R.S., Mancini V., Nelson C., Dressen S.Y., High Temperature Crystallization of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0. 05,9.03,11]—dodecane, US Patent 7288648, 2007.
  • [14] Hamilton R.S., Crystallization of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12- hexaazatetracyclo [5.5.0. 05,9.03,11]—dodecane, US Patent 6992158, 2006.
  • [15] Holtz E.V., Ornellas D., Folts M.F., Clarkson J.E., The Solubility of ε-CL-20 in Selected Materials, Propellants Explos. Pyrotech., 1994, 19, 206-212.
  • [16] Wardle R.B., Johnston G., Hinshaw J.C., Braithwaite P., Synthesis of the Cased Nitramine H HNIW (CL-20), 27th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 1996, 27.
  • [17] Venkatesan V., Ghosh M., Polke B.G., Sikder A.K., Crystallization and Characterization of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) Polymorphs Coupled with ab initio Computational Studies, 7th High Energy Materials Conference and Exhibit, Pune, India, December, 2009.
  • [18] McNesby K.L., Wolfe J.E., Morris J.B., Pesce-Rodriguez R.A., Fourier Transform Raman Spectroscopy of Some Energetic Materials and Propellant Formulations, J. Raman Spectrosc., 1994, 25, 75-87.
  • [19] Thiboutot S., Brousseau P., Ampleman G., Pantea D., Côté S., Potential Use of CL- 20 in TNT/ETPE-Based Melt Cast Formulations, Propellants Explos. Pyrotech., 2008, 33(2), 103-108.
  • [20] Ostmark H., Bergman H., Sjoberg P., Sensitivity and Spectroscopic Properties of the β-and ε- Polymorphs of HNIW, Int. Symposium on Energetic Materials Technology, Arizona, USA, 1995, 75-81.
  • [21] NATO STANAG 4566, Explosives, Specification for e-CL-20, NATO Military Agency for Standardization, 1110 Brussels, Belgium, September, 2004.
  • [22] Bouma R.H.B., Duvalois W.A.E., Heijden Vander D.M., Steen Vander A.C., Characterization of a Commercial Grade CL-20: Morphology, Crystal Shape and Shock Initiation Testing by Flyer Impact, 31st Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2000, 105/1-9.
  • [23] Torry S., Cuncliffe A., Polymorphism and Solubility of CL-20 in Plasticizers and Polymers, 31st Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2000, 107/1.
  • [24] Gorb L., Leszczynski J., Goede P., Latypov N.V., Östmark H., Fourier Transform Raman Spectroscopy of the Four Crystallographic Phases of α, β, γ and ε 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL-20), Propellants Explos. Pyrotech., 2004, 29(4), 205-208.
  • [25] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA, 2003.
  • [26] Scott A.P., Radom L., Harmonic Vibrational Frequencies: An Evaluation of Hartree- Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100, 16502-16513.
  • [27] Michalska D., Wysokiński R., The Prediction of Raman Spectra of Platinum(II) Anticancer Drugs by Density Functional Theory, Chem. Phys. Lett., 2005, 403, 211-217.
  • [28] Kholod Y., Okovytyy S., Kuramshina G., Qasim M., Gorb L., Furey J., Honea P., Fredrickson H., Leszczynski J., Are 1,5- and 1,7-Dihydrodiimidazo[4,5- b:40,50-e] Pyrazine the Main Products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20) Alkaline Hydrolysis? A DFT Study of Vibrational Spectra, J. Mol. Struct., 2006, 794, 288-302.
  • [29] Kholod Y., Okovytyy S., Kuramshina G., Qasim M., Gorb L., Leszczynski J., An Analysis of Stable Forms of CL-20: A DFT Study of Conformational Transition, Infrared and Raman Spectra, J. Mol. Struct., 2007,843, 14-25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2105853-2bea-4f06-a1e3-00ce994c1e6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.