PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The method for determination of the beginning of cavitational wear through comparison of mass decrement and destroyed surface increment on the example of FeAl36 alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavitational erosion is the phenomenon of mechanical destruction of a material due to the implosion of cavitational bubbles. Cavitational resistance is the ability of material to oppose the effect of cavitation being determined most frequently by analysing the kinetics of destruction of a material being examined on a given device. Materials with the highest resistance to cavitational destruction are characterised by the longest incubation period and smaller destruction rate. The carried out laboratory tests of resistance to cavitational erosion showed that determination of the beginning of cavitational wear is very difficult because the kinetics of cavitational destruction depends on: test bed type, tested material and test time. The aim of presented study was to propose a method for determination of the beginning of cavitational wear through comparison of mass decrement and destroyed area increment curves on the example of FeAl36 intermetallic alloy subjected to the cavitational wear on a flux-impact test stand.
Rocznik
Strony
103--107
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
  • Institute of Basic Technical Sciences, Maritime University of Szczecin, Szczecin, Poland
  • Institute of Basic Technical Sciences, Maritime University of Szczecin, Szczecin, Poland
autor
  • Department of Metallurgy and Material Technology, Military University of Technology, Warszawa, Poland
Bibliografia
  • [1] PN-86/H-04426. Cavitation Erosion. Terms, Definitions and Symbols (in Polish).
  • [2] A. Thiruvengadam, H.S. Preisner: On testing materials for cavitation damage resistance, Journal of ship research, Vol. 8, No 3 (1964) 39.
  • [3] J.W. Tichler, A.W. de Gee: Time Dependence of Cavitation Erosion and Effect of Some Material Properties, Farnborough, England, (1970) 847.
  • [4] F.J. Plesset, R.E. Devine: Effect of Exposure Time on Cavitation Damage, Journal Basic Eng. Vol. 68, No 4 (1966) 691.
  • [5] K. Steller: Cavitation. Basic concepts, with particular emphasis on the concepts of hydraulic machines, Zeszyty Naukowe Instytutu Maszyn Przepływowych PAN w Gdańsku, Nr 140/1057/82, Gdańsk 1982 (in Polish).
  • [6] G.P Thomas, J.H. Brunton: Drop Impingement Erosion of Metals, Proc. Roy. Soc. (London), A314 (1970) 549.
  • [7] R. Canavelis: Jet impact and cavitation damage, Journal of Basic Engineering, No 3 (1968) 355.
  • [8] J. Steller: International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation, Wear, Vol. 233-235 (1999) 51.
  • [9] H.G. Feller, Y. Kharrazi: Cavication erosion of metals and alloys, Wear, Vol. 93 (1984) 294.
  • [10] J. Fila, L. Piaseczny: Dynamic effects of sea water on composites protective and corrective Belzona Company, II Konferencja Naukowo-Techniczna, Rynia 1998, s. 151 (in Polish).
  • [11] J. Steller, P. Kaczmarzyk: Phenomenological Models of Cavitation Erosion Progress, I Pomorska Konferencja Naukowa „Inżynieria Materiałowa 2000”, Gdańsk, 2000 s. 241 (in Polish).
  • [12] R. Jasionowski, D. Zasada: The effect of aluminium content on the cavitational erosion resistanse of Fe-Al(B2) alloys, 15th International Conference on the Properties of Water and Steam, 2008.
  • [13] R. Jasionowski., W. Przetakiewicz, D. Zasada: The cavitational erosion resistance of the B2-type Fe-Al casting alloys, Archives of Foundry Engineering, Vol. 10(2010) 305.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e20aa20a-0c07-4174-a0a2-f24801a9cd51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.