PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction-Assisted Additive Manufacturing (FAAM) for Multistack Aluminum AA6061-T6/ AA7075-T6 Armor Plates: Numerical Investigation, Fabrication, and Characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite armoring materials are generally fabricated using multiple layers of metallic and non-metallic materials such as titanium, steel, aluminum, ceramics, epoxy, resins, etc. Building these armor materials in the first place aims to withstand high-velocity bullets. Aluminum alloys are the best choice to offer increased mobility and excellent properties like a high strength-to-weight ratio, fracture toughness, and corrosion resistance. In this research, Forrestal and Warren scaling law techniques were employed to determine the optimal aluminum armor plate thickness to withstand 500 m/s velocity 7.62 mm projectile releasing from the pistol. FEA package Ansys was utilized for numerical simulations of bullet penetration, validating the results obtained from the scaling laws. After that, friction-assisted additive manufacturing (FAAM) was explored to build an AA6061/AA7075 laminated aluminum metal matrix composite (AMMC) for armor. Considering the plate thickness, the FAAM tool was designed with an optimum shoulder length, shoulder diameter, pin length, and pin diameter. Then the optimized process parameters were utilized to build the multi-stack armor plate using dissimilar aluminum alloys. Microstructural, and mechanical characterizations were conducted to assess the feasibility of the FAAM-built multi-stack armor plate. The findings of the work revealed better-refined grain’s microstructural profile in comparison with base materials and resulted in higher tensile and micro-hardness results. FAAM build improved the mechanical strength and yield strength of the base alloy AA6061 by roughly 25% and 31%, respectively.
Twórcy
  • VIT-AP University, School of Mechanical Engineering, Amaravati, Andhra Pradesh, India-522237
autor
  • VIT-AP University, School of Mechanical Engineering, Amaravati, Andhra Pradesh, India-522237
Bibliografia
  • [1] T. Nieberle, S.R. Kumar, A. Patnaik, C. Goswami, Adv. Eng. Des: Select Proceedings of ICOIED 2020, 239-248 (2021). DOI: https://doi.org/10.1007/978-981-33-4018-3_22
  • [2] P.H. Silveira, T.T. Silva, M.P. Ribeiro, P.R. Rodrigues de Jesus, P.C. Credmann, A.V. Gomes, Acad. Lett 3742, 1-11 (2021). DOI: https://doi.org/10.20935/AL3742
  • [3] G. Marsh, Reinf. Plast. 61 (2), 96-99 (2017). DOI: https://doi.org/10.1016/j.repl.2015.10.003
  • [4] M. Fejdyś, K. Kośla, A. Kucharska-Jastrząbek, M. Landwijt, Fibres Text. East. Eur. 3 (117), 79-89 (2016). DOI: https://doi.org/10.5604/12303666.1196616
  • [5] A. Pai, C.R. Kini, S. Shenoy, Thin-Walled Struct 179, 109664 (2022). DOI: https://doi.org/10.1016/j.tws.2022.109664
  • [6] N.D. Andraskar, G. Tiwari, M.D. Goel, Ceram. Int., (2022). DOI: https://doi.org/10.1016/j.ceramint.2022.06.313
  • [7] R. Scazzosi, S.D. de Souza, S.C. Amico, M. Giglio, A. Manes, Compos. B. Eng. 230, 109488 (2022). DOI: https://doi.org/10.1016/j.compositesb.2021.109488
  • [8] S. Siengchin, Def. Technol, (2023). DOI: https://doi.org/10.1016/j.dt.2023.02.025
  • [9] P. Si, Y. Liu, J. Yan, F. Bai, Z. Shi, F. Huang, Structures 48, 1856-1867 (2023). DOI: https://doi.org/10.1016/j.istruc.2023.01.089
  • [10] T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, M. Langseth, Int. J. Impact Eng, 36(3), 426-437 (2009). DOI: https://doi.org/10.1016/j.ijimpeng.2008.02.004
  • [11] S.C. Kundurti, A. Sharma, P. Tambe, A. Kumar, Mater. Today 56, 1468-1477 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.12.337
  • [12] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, 17, Springer Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-030-56127-7
  • [13] K. Sanjeeviprakash, A.R. Kannan, N.S. Shanmugam, J. Braz. Soc. Mech. Sci. Eng. 45 (5), 241 (2023). DOI: https://doi.org/10.1007/s40430-023-04174-1
  • [14] R.S . Mishra, R.S. Haridas, P. Agrawal, Sci. Technol. Weld. Join. 27(3), 141-165 (2022). DOI: https://doi.org/10.1080/13621718.2022.2027663
  • [15] A. Hassan, S.R. Pedapati, M. Awang, I.A. Soomro, Materials 16 (7), 2723 (2023). DOI: https://doi.org/10.3390/ma16072723
  • [16] A. Srivastava, N. Kumar, A.R. Kumar, Dixit, Mater. Sci. Eng. B 263, 114832 (2021). DOI: https://doi.org/10.1016/j.mseb.2020.114832
  • [17] S. Choudhury, U. Acharya, J. Roy, B.S. Roy, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 237 (2), 467-491 (2023). DOI: https://doi.org/10.1177/09544089221107755
  • [18] M. Srivastava, S. Rathee, Mater. Today: Proc. 39, 1775-1780 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.07.137
  • [19] S. Yan, L. Chen, A. Yob, D. Renshaw, K. Yang, M. Givord, D. Liang, J. Mater. Eng. Perform. 31 (8), 6183-6195 (2022). DOI: https://doi.org/10.1007/s11665-022-07114-7
  • [20] M. Srivastava, S. Rathee, S. Maheshwari, A.N. Siddiquee, T.K. Kundra, Crit. Rev. Solid State Mater. Sci. 44 (5), 345-377 (2019). DOI: https://doi.org/10.1080/10408436.2018.1490250
  • [21] M.J. Forrestal, T.L. Warren, Int. J. Impact Eng. 36 (2), 220-225 (2009). DOI: https://doi.org/10.1016/j.ijimpeng.2008.04.005
  • [22] T. Børvik, M.J. Forrestal, T.L. Warren, Exp. Mech. 50, 969-978 (2010). DOI: https://doi.org/10.1007/s11340-009-9262-5
  • [23] M.J. Forrestal, T. Børvik, T.L. Warren, W. Chen, Exp. Mech. 54, 471-481 (2014). DOI: https://doi.org/10.1007/s11340-013-9817-3
  • [24] M.J. Forrestal, B. Lim, W. Chen, Exp. Mech. 59, 121-123 (2019). DOI: https://doi.org/10.1007/s11340-018-00442-7
  • [25] M.J. Forrestal, L.A. Romero, Int. J. Impact. Eng. 18, 877-887 (2007). DOI: https://doi.org/10.1016/j.ijimpeng.2006.12.003
  • [26] M.J. Forrestal, T. Børvik, T.L. Warren, Exp. Mech. 50, 1245-1251 (2010). DOI: https://doi.org/10.1007/s11340-009-9328-4
  • [27] T. Børvik, O.S. Hopperstad, T. Berstad, M. Langseth, Eur. J. Mech. A/Solids 20 (5), 685-712, (2001). DOI: https://doi.org/10.1016/S0997-7538(01)01157-3
  • [28] P. Rangacharyulu, B.V. Varma, S.S. Saran, I. Sudhakar, Mater. Today 5 (9), 19628-19637 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.06.325
  • [29] M. Burkins, In 23rd International Symposium on Ballistics, (2007). DOI: http://www.ciar.org/ttk/mbt/papers/isb2007/paper.x.isb2007.TB11.ballistic_performance_of_thin_titanium_plates.burkins.2007.pdf
  • [30] X. Chen, Y. Liu, Finite element modeling and simulation with ANSYS Workbench, CRC Press, (2018). DOI: https://doi.org/10.1201/9781351045872
  • [31] ASTM E3-95-Standard Practice for Preparation of Metallographic Specimens, ASTM International, (2001).
  • [32] M. Mohammadtaheri, Metallogr. Microstruct. Anal. 1, 224-226. (2012). DOI: https://doi.org/10.1007/s13632-012-0033-9
  • [33] WK49229, A.S.T.M, New Guide for Orientation and Location Dependence Mechanical Properties for Metal Additive Manufacturing. Work in Progress, (2015).
  • [34] K.K. Jha, R. Kesharwani, M. Imam, Trans. Indian Inst. Met. 76 (2), 323-333 (2023). DOI: https://doi.org/10.1007/s12666-022-02672-9
  • [35] K.K. Jha, R. Kesharwani, M. Imam, Mater. Today: Proc. 56, 819-825 (2022). DOI: https://doi.org/10.1016/j.matpr.2022.02.262
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f9ee0e-b473-406e-91c5-5f04a0cd4cb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.