Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
Abstrakty
This paper deals with adsorption of a cationic dye – methylene blue - on the activated biocarbon obtained via chemical activation of horsetail herb post-extraction residue. The effects of initial dye concentration, temperature, solution pH, as well as the phase contact time on the adsorption effectiveness have been tested. The adsorbent prepared was characterized based on the results of elementary analysis, surface area measurements, thermal analysis as well as determination of the acid-base nature of its surface. It has been shown that micro/mesoporous horsetail herb-based activated biocarbon exhibits a significantly higher ability to methylene blue uptake than the commercial activated carbon prepared from peat. It has been also found that the adsorption capacity increases with the increasing initial dye concentration in the solution and the phase contact time. The maximum adsorption toward methylene blue was found at pH=12 and at temperature of 40 C. A better fit to the experimental data was obtained with a Langmuir isotherm than Freundlich one, whereas better fit of the kinetic data was achieved using the pseudo-second order model.
Rocznik
Tom
Strony
art. no. 146709
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
autor
- Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Laboratory of Optical Fibers Technology, M. Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
autor
- Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Laboratory of Optical Fibers Technology, M. Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
autor
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
Bibliografia
- BANDOSZ, T.J., 2006. Activated Carbon Surfaces in Environmental Remediation. Elsevier Books.
- BAZAN-WOZNIAK, A., NOWICKI, P., WOLSKI, R., PIETRZAK, R., 2021. Activated bio-carbons prepared from the residue of supercritical extraction of raw plants and their application for removal of nitrogen dioxide and hydrogen sulfide from the gas phase. Materials 14(12): 3192.
- BAZAN-WOZNIAK, A., PIETRZAK, R., 2020. Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem. Eng. J. 393, 124785.
- BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 152, 211-222.
- BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2018. Production of new activated bio-carbons by chemical activation of residue left after supercritical extraction of hops. Environ. Res. 161, 456-462.
- BOEHM, H.P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769.
- BOEHM, H.P., DIEHL, E., HECK, W., SAPPOK, R., 1964. Surface oxides of carbon. Angew. Chem. Int. Edit. Engl. 3, 669–677.
- BOTTANI, E. J., TASCÓN, M.D., 2008. Adsorption by carbons. Elsevier Ltd.
- ÇEÇEN, F., AKTAŞ, Ö., 2011. Activated carbon for water and wastewater treatment: Integration of adsorption and biological treatment. Wiley‐VCH Verlag GmbH & Co. KGaA, Singapore.
- GRZYBEK, T., KLINIK, J., MOTAK, M., PAPP, H., 2008. Nitrogen-promoted active carbons as catalytic supports 2. The influence of Mn promotion on the structure and catalytic properties in SCR. Catal. Today 137, 235–241.
- HUANG, S.H, CHEN, D.H., 2009. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163(1), 174-179.
- KAZMIERCZAK-RAZNA, J., GRALAK-PODEMSKA, B., NOWICKI, P., PIETRZAK, R., 2015. The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S. Chem. Eng. J. 269, 352- 358.
- MAZUREK, K., DRUŻYŃSKI, S, KIEŁKOWSKA, U., SZŁYK, E., 2021. New separation material obtained from waste rapeseed cake for copper(ii) and zinc(ii) removal from the industrial wastewater. Materials 14(10), 2566.
- MEI, S., GU, J., MA,T., LI, X., HU, Y., LI, W., ZHANG, J., HAN, Y., 2019. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem. Eng. J. 371, 118-129.
- NOWICKI, P., KAZMIERCZAK-RAZNA, J., PIETRZAK, R., 2016. Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate. Mater. Des. 90, 579-585.
- NOWICKI, P., KAZMIERCZAK-RAZNA, J., SKIBISZEWSKA, P., WIŚNIEWSKA, M., NOSAL-WIERCIŃSKA, A., PIETRZAK, R., 2016. Production of activated carbons from biodegradable waste materials as an alternative way of their utilization. Adsorption 22, 489-502.
- NOWICKI, P., SZYMANOWSKI, W., PIETRZAK, R., 2015. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes. Pol. J. Chem. Tech. 17(4), 120-127.
- PERUCHI, L.M., FOSTIER, A.H., RATH, S., 2015. Sorption of norfloxacin in soils: Analytical method, kinetics and Freundlich isotherms. Chemosphere 119, 310-317.
- RAFATI, L., EHRAMPOUSH, M.H., RAFATI, A.A., MOKHTARI, M., MAHVI, A.H., 2016. Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nanoclay composite adsorbent. J. Mol. Liq. 224, 832-841.
- RECHNIA-GORĄCY, P., MALAIKA, A., KOZŁOWSKI, M., 2020. Effective conversion of rapeseed oil to biodiesel fuel in the presence of basic activated carbon catalysts. Catal. Today. 357, 102-112.
- SALEH, T.A., GUPTA, V.K., 2012. Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19, 1224-1228.
- SZEWCZUK-KARPISZ, K., WIŚNIEWSKA, M., NOWICKI, P., OLESZCZUK, P., 2020. Influence of protein internal stability on its removal mechanism from aqueous solutions using eco-friendly horsetail herb-based engineered biochar. Chem. Eng. J. 388: 124156
- TUOMIKOSKI, S., KUPILA, R., ROMAR, H., BERGNA, D, KANGAS, T., RUNTTI, H., LASSI, U., 2019. Zinc adsorption by activated carbon prepared from lignocellulosic waste biomass. Appl. Sci. 9, 4583.
- WAWRZKIEWICZ, M., POLSKA-ADACH, E., WIŚNIEWSKA, M., FIJAŁKOWSKA, G., GONCHARUK, O., 2019. Adsorptive removal of C.I. Direct Yellow 142 form textile baths using nanosized silica-titania oxide. Eur. Phys. J. Plus. 134, 108-117.
- WIŚNIEWSKA, M., NOWICKI, P., 2019. Simultaneous removal of lead(II) ions and poly(acrylic acid) macromolecules using of biocarbons obtained from corncob and peanut shell precursors. J. Mol. Liq. 296: 111806.
- WIŚNIEWSKA, M., WRZESIŃSKA, K., WAWRZKIEWICZ, M., CHIBOWSKI, S., URBAN, T., GONCHARUK, O., GUN’KO, V. M., 2020. Alumina-silica-titania adsorbent for hazardous azo and phtalocyanine dyes removal from textile baths and wastewaters – the impact of ionic surfactants. Physicochem. Probl. Min. Process. 56, 178-193.
- WU, L., SHANG, Z., WANG, H., WAN, W., GAO, X., LI, Z., KOBAYASHI, N., 2018. Production of activated carbon from walnut shell by CO2 activation in a fluidized bed reactor and its adsorption performance of copper ion. J. Mat. Cycles Waste. Manag. 20, 1676–1688.
- YAGUB, M. T., SEN, T. K., AFROZE, S., ANG, H. M., 2014. Dye and its removal from aqueous solution by adsorption: A Review. Adv. Colloid Interf. Sci. 209, 172–184
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f53de5-7695-455f-bcdc-0a921fa54fc2