PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanics of moving contacts involving functionally graded multiferroics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article introduces solution procedures for moving contacts involving functionally graded multiferroic coatings. A moving rigid punch of a flat or a triangular profile is assumed to be in contact with a multi-layer medium comprising magneto-electro-elastic coating layers, elastic interlayers, and an elastic substrate, that is modelled as a half-plane. The formulation is based on wave equations of plane elastodynamics and Maxwell’s equations. Applying Fourier and Galilean transformations, a singular integral equation of the second kind is derived for each of the flat and triangular punch problems. An expansion-collocation technique utilizing Jacobi polynomials is developed to numerically solve the integral equations. Proposed procedures are verified through comparisons to the results available in the literature. Parametric analyses carried out considering functionally graded magneto-electro-elastic coatings demonstrate the effects of the property variation profile, punch speed, and coating thickness on contact stresses, electric displacement, and magnetic induction. The methods presented could be of use in analysis and design studies of multiferroic layered systems subjected to moving contacts.
Rocznik
Strony
431--468
Opis fizyczny
Bibliogr 43 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
autor
  • Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
Bibliografia
  • 1. C. Dong, X. Liang, J. Gao, H. Chen, Y. He, Y. Wei, M. Zaeimbashi, A. Matyushov, C. Sun, N.X. Sun, Thin film magnetoelectric sensors toward biomagnetism: materials, devices, and applications, Advanced Electronic Materials, 8, 2200013, 2022.
  • 2. B. Behera, B.C. Sutar, N.R. Pradhan, Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity, Emergent Materials, 4, 847–863, 2021.
  • 3. K. Malleron, A. Gensbittel, H. Talleb, Z. Ren, Experimental study of magnetoelectric transducers for power supply of small biomedical devices, Microelectronics Journal, 88, 184–189, 2019.
  • 4. Y.Wang, J. Li, D. Viehland, Magnetoelectrics for magnetic sensor applications: status, challenges, and perspectives, Materials Today, 17, 269–275, 2014.
  • 5. J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Advanced Materials, 23, 1062–1087, 2011.
  • 6. Z. Surowiak, D. Bochenek, Multiferroic materials for sensors, transducers, and memory devices, Archives of Acoustics, 33, 243–260, 2008.
  • 7. V. Boggarapu, R. Gujjala, S. Ojha, S. Acharya, P. Venkateswara Babu, S. Chowdary, D.K. Gara, State of the art in functionally graded materials, Composite Structures, 262, 113596, 2021.
  • 8. P. Hajheidari, I. Stiharu, R. Bhat, Performance of non-uniform functionally graded piezoelectric energy harvester beams, Journal of Intelligent Material Systems and Structures, 31, 1604–1616, 2020.
  • 9. B. Saleh, J. Jiang, R. Fathi, T. Al-hababi, Q. Xu, L. Wang, D. Song, A. Ma, 30 years of functionally graded materials: an overview of manufacturing methods, applications and future challenges, Composites Part B: Engineering, 201, 108376, 2020.
  • 10. S. Vijayavenkataraman, L.Y. Kuan, W.F. Lu, 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants, Materials & Design, 191, 108602, 2020.
  • 11. S. Kumar, K.V.V.S. Murthy Reddy, A. Kumar, G. Rohini Devi, Development and characterization of polymer-ceramic fiber-reinforced functionally graded composites for aerospace application, Aerospace Science and Technology, 26, 185–191, 2013.
  • 12. S.E. Toktas, S. Dag, Multi-layer model for moving contact problems of functionally graded coatings with general variations in physical properties, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236, 1967–1980, 2022.
  • 13. S.E. Toktas, S. Dag, Stresses in multi-layer coatings in Hertzian contact with a moving circular punch, Tribology International, 171, 107565, 2022.
  • 14. I. Eshraghi, S. Dag, Transient dynamic analysis of functionally graded micro-beams considering small-scale effects, Archives of Mechanics, 73, 303–337, 2021.
  • 15. F.P.E. Ngak, G.E. Ntamack, L. Azrar, Three dimensional modeling of static deformation of arbitrary functionally graded multilayered multiferroic composite plates with weakly and highly conducting imperfect interfaces, Journal of Intelligent Material Systems and Structures, 32, 2066–2091, 2021.
  • 16. J. Yan, C. Mi, Double contact analysis of multilayered elastic structures involving functionally graded materials, Archives of Mechanics, 69, 199–221, 2017.
  • 17. R. Wang, E. Pan, Three-dimensional modeling of functionally graded multiferroic composites, Mechanics of Advanced Materials and Structures, 18, 68–76, 2011.
  • 18. W. Chen, E. Pan, H. Wang, C. Zhang, Theory of indentation on multiferroic composite materials, Journal of the Mechanics and Physics of Solids, 58, 1524–1551, 2010.
  • 19. J. Ma, L.-L. Ke, Y.-S. Wang, Frictionless contact of a functionally graded magnetoelectroelastic layered half-plane under a conducting punch, International Journal of Solids and Structures, 51, 2791–2806, 2014.
  • 20. R. Elloumi, I. Kallel-Kamoun, S. El-Borgi, M.A. Guler, Closed-form solutions of the frictional sliding contact problem for a magneto-electro-elastic half-plane indented by rigid conducting punch, International Journal of Solids and Structures, 50, 3778–3792, 2013.
  • 21. R. Elloumi, I. Kallel-Kamoun, S. El-Borgi, M.A. Guler, On the frictional sliding contact problem between a rigid circular conducting punch and a magneto-electro-elastic half-plane, International Journal of Mechanical Sciences, 87, 1–17, 2014.
  • 22. Y.-T. Zhou, T.-W. Kim, An exact analysis of sliding frictional contact of a rigid punch over the surface of magneto-electro-elastic materials, Acta Mechanica, 225, 625–645, 2014.
  • 23. Y.-T. Zhou, K.Y. Lee, Theory of sliding contact for multiferroic materials indented by a rigid punch, International Journal of Mechanical Sciences, 66, 156–167, 2013.
  • 24. R. Elloumi, S. El-Borgi, M.A. Guler, I. Kallel-Kamoun, The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane, Acta Mechanica, 227, 1123–1156, 2016.
  • 25. J. Ma, L.-L. Ke, Y.-S. Wang, Sliding frictional contact of functionally graded magnetoelectroelastic materials under a conducting flat punch, Journal of Applied Mechanics – Transactions of the ASME, 82, 011009-1, 2015.
  • 26. X. Zhang, Z. Wang, H. Shen, Q.J. Wang, Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects, International Journal of Mechanical Sciences, 131–132, 633–648, 2017.
  • 27. H. Zhang, W.Wang, Y. Liu, Z. Zhao, Semi-analytic modelling of transversely isotropic magneto-electro-elastic materials under frictional sliding contact, Applied Mathematical Modelling, 75, 116–140, 2019.
  • 28. I. Çömez, Thermoelastic contact problem of a magneto-electro-elastic layer indented by a rigid insulating punch, Mechanics of Advanced Materials and Structures, 29, 7231–7245, 2022.
  • 29. J. Ma, S. El-Borgi, L.-L. Ke, Y.-S. Wang, Frictional contact problem between a functionally graded magnetoelectroelastic layer and a rigid conducting flat punch with frictional heat generation, Journal of Thermal Stresses, 39, 245–277, 2016.
  • 30. I. Çömez, Frictional moving contact problem of a magneto-electro-elastic half plane, Mechanics of Materials, 154, 103704, 2021.
  • 31. Y.-T. Zhou, K.Y. Lee, Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part I: Closed-form solutions, International Journal of Solids and Structures, 49, 3853–3865, 2012.
  • 32. Y.-T. Zhou, K.Y. Lee, Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part II: Numerical results, International Journal of Solids and Structures, 49, 3866–3882, 2012.
  • 33. Y. Mei, Z. Duan, Z. Li, Y. Zhao, J. Ni, Y. Li, J. Zhang, Y. Chen, X. Wang, G. Zhao, Enhanced multiferroic properties of Bi4Ti3-XCoXO12/La0:67Sr0:33MnO3 layered composite thin films, Ceramics International, 48, 21728–21738, 2022.
  • 34. M. Scigaj, N. Dix, J. Gazquez, M. Varela, I. Fina, N. Domingo, G. Herranz, V. Skumryev, J. Fontcuberta, F. Sanchez, Monolithic integration of roomtemperature multifunctional BaTiO3-CoFe2O4 epitaxial heterostructures on Si(001), Scientific Reports, 6, 31870, 2016.
  • 35. S. Sharma, M. Tomar, A. Kumar, N.K. Puri, V. Gupta, Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films, Physica B: Condensed Matter, 448, 125–127, 2014.
  • 36. X. Wang, E. Pan, J.D. Albrecht, W.J. Feng, Effective properties of functionally graded multiferroic composites, Composite Structures, 87, 206–214, 2009.
  • 37. S. Dag, Crack and Contact Problems in Graded Materials, Ph.D. Dissertation, Lehigh University, Bethlehem, PA, USA, 2001.
  • 38. MEMSnet, Material: silicon (Si), bulk, [online], available at: https://www.memsnet.org/material/siliconsibulk/ (accessed 14 July 2023).
  • 39. K. Suzuki, M. Kato, T. Sunaoshi, H. Uno, U. Carvajal-Nunez, A.T. Nelson, K.J. McClellan, Thermal and mechanical properties of CeO2, Journal of the American Ceramic Society, 102, 1994–2008, 2019.
  • 40. A.R. Annamalai, N. Nagaraju, D.K. Agrawal, A. Muthuchamy, Effect of heating mode on sinterability of YSZ+CeO2 ceramics, Metals, 8, 1–7, 2018.
  • 41. M. Golalikhani, Q. Lei, R.U. Chandrasena, L. Kasaei, H. Park, J. Bai, P. Orgiani, Ciston, G.E. Sterbinsky, D.A. Arena, P. Shafer, E. Arenholz, B.A. Davidson, A.J. Millis, A.X. Gray, X.X. Xi, Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films, Nature Communications, 9, 1–8, 2018.
  • 42. S. Masys, V. Jonauskas, Elastic properties of rhombohedral, cubic, and monoclinic phases of LaNiO3 by first principles calculations, Computational Materials Science, 108, 153–159, 2015.
  • 43. S. Giraud, J. Canel, Young’s modulus of some SOFCs materials as a function of temperature, Journal of the European Ceramic Society, 28, 77–83, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f447e1-ac72-4d97-bfd3-16ee2254d0de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.