Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, Al5052 alloy was reinforced with varying weight percentages of titanium diboride (TiB₂) and zirconium dioxide (ZrO2) to fabricate three hybrid composite samples (S1, S2, and S3) via the stir casting process. Dry sliding wear tests were conducted using a pin-on-disc apparatus under varying loads (10, 20, and 30 N) and sliding speeds (300, 500, and 700 rpm), with a constant sliding distance of 1500 m. The results showed that the specific wear rate (SWR) grew with increasing load, reaching a maximum of 3.45 × 10-4 mm3/Nm for sample S1 at 30 N. Among the samples, S3 exhibited the best wear resistance, with the lowest SWR of 1.35 × 10-4 mm3/Nm under identical conditions. SEM analysis revealed different wear mechanisms such as mild ploughing in S1, crack formation in S2, and plastic deformation in S3. These findings demonstrate that the hybrid reinforcement of TiB₂ and ZrO2 significantly improves the wear resistance of Al5052, making it suitable for applications in automotive and aerospace sectors requiring enhanced surface durability.
Czasopismo
Rocznik
Tom
Strony
58--66
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Parul Institute of Engineering and Technology, Parul University, Vadodara, India
autor
- Department of Mechanical Engineering, National Institute of Technology Kurukshetra, Haryana, India
autor
- Department of Applied Science, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali Punjab, India
autor
- Department of Aeronautical Engineering, Hindustan Institute of Technology and Science, Chennai, India
autor
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad
autor
- Department of Mechanical Engineering, Rashtrakavi Ramdhari Singh Dinkar College of Engineering, Begusarai, India
Bibliografia
- [1] H. Nautiyal, S. Kumari, O. P. Khatri, R. Tyagi, ‘Copper matrix composites reinforced by rGO-MoS2 hybrid: Strengthening effect to enhancement of tribological properties’, Composites Part B: Engineering, vol. 173, no. May, p. 106931, 2019, DOI: 10.1016/j.compositesb.2019.106931.
- [2] D. Kumar, S. Singh, S. Angra, ‘Effect of reinforcements on mechanical and tribological behavior of magnesium based composites : a review’, vol. 50, no. 3, pp. 439 458, 2022, DOI: 10.18149/MPM.5032022.
- [3] S. Singh, S. Angra, ‘Experimental evaluation of hygro thermal degradation of stainless steel fibre metal lami nate’, Engineering Science and Technology, an International Journal, vol. 21, no. 1, pp. 170–179, 2018, DOI: 10.1016/j.jestch.2018.01.002.
- [4] E. Omrani, P.L. Menezes, P.K. Rohatgi, ‘State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world’, Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 717–736, 2016, DOI: 10.1016/j.jestch.2015.10.007.
- [5] D. Kumar, S. Angra, S. Singh, ‘Mechanical Properties and Wear Behaviour of Stir Cast Aluminum Metal Matrix Composite: A Review’, International Journal of Engineering, Transactions A: Basics, vol. 35, no. 4, pp. 794–801, 2022, DOI: 10.5829/IJE.2022.35.04A.19.
- [6] S. Wakeel, A.A. Khan, ‘REVIEW ARTICLE A RE VIEW ON THE MECHANICAL PROPERTIES OF ALUMINIUM BASED METAL MATRIX * Saif Wakeel and Ateeb Ahmad Khan’, vol. 6, pp. 1096–1100, 2017.
- [7] D. Kumar, ‘Qualitative and quantitative interdependence of physical and mechanical properties of stir-casted hybrid aluminum composites’, vol. 51, no. 6, pp. 14–23, 2023, DOI: 10.18149/MPM.5162023.
- [8] M. Jafarian, M. Saboktakin, ‘A Comprehensive Study of Diffusion Bonding of Mg AZ31 to Al 5754, Al 6061 and Al 7039 Alloys’, Transactions of the Indian Institute of Metals, vol. 71, no. 12, pp. 3011–3020, 2018, DOI: 10.1007/s12666-018-1402-0.
- [9] M. Alloying, ‘Microstructure and Compressive Behavior of Al–Y 2 O 3 Nanocomposites Prepared by Microwave-Assisted Mechanical Alloying’, 2019.
- [10] T. Article, "The Corrosion Behavior of Graphene-Rein forced Al Matrix Composites in 3 . 5 wt .% NaCl Solution", vol. 32, no. June, pp. 5176-5185, 2023, DOI: 10.1007/s11665-022-07452-6.
- [11] S. Ozden, R. Ekici, F. Nair, "Investigation of impact be haviour of aluminium based SiC particle reinforced metal-matrix composites" Composites Part A: Applied Science and Manufacturing, vol. 38, no. 2, pp. 484–494, 2007, DOI: 10.1016/j.compositesa.2006.02.026.
- [12] J. Petrovi, S. Mladenovi, I. Markovi, S. Dimitrijevi, "CHARACTERIZATION OF HYBRID ALUMINUM COMPOSITES REINFORCED WITH Al2O3 PAR TICLES AND WALNUT-SHELL", vol. 56, no. 2, pp. 115–122, 2022, DOI: 10.17222/mit.2022.365.
- [13] D. Kumar, S. Angra, S. Singh, "Synthesis and character ization of DOE-based stir-cast hybrid aluminum composite reinforced with graphene nanoplatelets and ce rium oxide", Aircraft Engineering and Aerospace Technology, vol. 95, no. 10, pp. 1604–1613, 2023, DOI: 10.1108/AEAT-04-2023-0104.
- [14] A. Subburaj, A. Marcel, M. Antony, J. Decruz, ‘Mechanical Characterization and Microstructural Analysis on AA2024 Hybrid Composites Reinforced with WC and Graphene Nanoparticles’, Transactions of the In dian Institute of Metals, vol. 75, no. 7, pp. 1721–1730, 2022, DOI: 10.1007/s12666-021-02488-z.
- [15] D. Kumar, S. Singh, S. Angra, "Dry sliding wear and microstructural behavior of stir-cast Al6061-based com posite reinforced with cerium oxide and graphene nanoplatelets", Wear, vol. 516–517, no. September 2022, p. 204615, 2023, DOI: 10.1016/j.wear.2022.204615.
- [16] D. Kumar, S. Angra, S. Singh, ‘High-temperature dry sliding wear behavior of hybrid aluminum composite reinforced with ceria and graphene nanoparticles’, Engineering Failure Analysis, vol. 151, no. May, p. 107426, 2023, DOI: 10.1016/j.engfailanal.2023.107426.
- [17] R. Arunbharathi, R. Rathish, R.S. Vignesh, P.S. Seelan, R. V. Prasanth, ‘Mechanical and Tribological Charac teristics of Particulates Embedded Aluminium Based Composites – A Review’, vol. XIV, no. 3, pp. 12–16, 2021.
- [18] M. C. Senel, ‘Dry Sliding Wear and Friction Behavior of Graphene / ZrO 2 Binary Nanoparticles Reinforced Aluminum Hybrid Composites’, pp. 9253–9269, 2022, DOI: 10.1007/s13369-022-06661-4.
- [19] A. Sharma, S. Kumar, G. Singh, O. P. Pandey, "Effect of particle size on wear behavior of al-garnet composites" Particulate Science and Technology, vol. 33, no. 3, pp. 234–239, 2015, DOI: 10.1080/02726351. 2014.954686.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f33e6b-32d4-4365-a567-bcaff830b26e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.