PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Acid Mine Drainage in a Bioelectrochemical System, Based on an Anodic Microbial Sulfate Reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibilities of simultaneous removal of sulfates and heavy metals (Cu, Ni, Zn) from acid mine drainage have been investigated in two-section bioelectrochemical system (BES). The used BES is based on the microbial sulfate reduction (MSR) process in the anode zone and abiotic reduction processes in the cathodic zone. In the present study, the model acid mine drainage with high sulfate (around 4.5 g/l) and heavy metals (Cu2+, Ni2+ and Zn2+) content was performed. As a separator in the laboratory, BES used an anionic exchange membrane (AEM), and for electron donor in the process of microbial sulfate reduction in the bioanode zone – waste ethanol stillage from the distillery industry was employed. In this study, the possibility of sulfates removal from the cathodic zone was established by their forced migration through AEM to the anode zone. Simultaneously, as a result of the MSR process, the sulfate ions passed through AEM are reduced to H2S in the anode zone. The produced H2S, having its role as a mediator in electron transfer, is oxidized on the anode surface to S0 and other forms of sulfur. The applicability of waste ethanol stillage as a cheap and affordable organic substrate for the MSR process has also been established. Heavy metals (Cu2+, Ni2+ and Zn2+) occur in the cathode chamber of BES in different degrees of the removal. As a microbial fuel cell (MFC) operating for 120 hours, the reduction rate of Cu2+ reaches 94.6% (in waste ethanol stillage) and 98.6% (in the case of Postgate culture medium). On the other hand, in terms of Ni2+ and Zn2+, no significant decrease in their concentrations in the liquid phase is found. In the case of microbial electrolysis cell (MEC) mode reduction of Cu2+– 99.9%, Ni2+– 65.9% and Zn2+– 64.0% was achieved. For 96 hours, the removal of sulfates in MEC mode reached 69.9% in comparison with MFC mode – 35.2%.
Rocznik
Strony
175--186
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Engineering Geoecology, University of Mining and Geology, St. Ivan Rilski, Sofia 1700, Bulgaria
  • Department of Engineering Geoecology, University of Mining and Geology, St. Ivan Rilski, Sofia 1700, Bulgaria
autor
  • Department of Engineering Geoecology, University of Mining and Geology, St. Ivan Rilski, Sofia 1700, Bulgaria
  • Department of Engineering Geoecology, University of Mining and Geology, St. Ivan Rilski, Sofia 1700, Bulgaria
Bibliografia
  • 1. Agostino, V., Rosenbaum, M.A. 2018. Sulfate-Reducing ElectroAutotrophs and Their Applications in Bioelectrochemical Systems. Frontiers in Energy Research, 6. DOI: 10.3389/fenrg.2018.00055
  • 2. Angelov, A., Bratkova, S., Loukanov, A. 2013. Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Conversion and Management, 67, 283–286. DOI: 10.1016/j.enconman.2012.11.024
  • 3. APHA. 1989. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, New York.
  • 4. Blázquez, E., Gabriel. D., Baeza, J.A., Guisasola, A., Freguia, S., Ledezma, P. 2019a. Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell. Science of The Total Environment, 677, 175–183. DOI: 10.1016/j.scitotenv.2019.04.406
  • 5. Blázquez, E., Guisasola, A., Gabriel, D., Baeza, J.A. 2019b. Application of Bioelectrochemical Systems for the Treatment of Wastewaters With Sulfur Species. Microbial Electrochemical Technology, 641–663. DOI: 10.1016/b978-0-444-64052-9.00026-1
  • 6. Bratkova, S., Alexieva, Z., Angelov, A., Nikolova, K., Genova, P., Ivanov, R., Gerginova, M., Peneva, N., Beschkov, V. 2019. Efficiency of microbial fuel cells based on the sulphate reduction by lactate and glucose. Int. J. Environ. Sci. Technol., 16(10), 6145–6156.
  • 7. Brewster, E.T., Pozo, G., Batstone, D.J., Freguia, S., Ledezma, P. 2018. A modelling approach to assess the long-term stability of a novel microbial/electrochemical system for the treatment of acid mine drainage. RSC Advances, 8(33), 18682–18689. DOI: 10.1039/c8ra03153c
  • 8. Celis-García, L.B., Razo-Flores, E., Monroy, O. 2006. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors. Biotechnology and Bioengineering, 97(4), 771–779. DOI: 10.1002/bit.21288
  • 9. Favas, P.J.C., Martino, L.E., Prasad, M.N.V. 2018. Abandoned Mine Land Reclamation—Challenges and Opportunities (Holistic Approach). Bio-Geotechnologies for Mine Site Rehabilitation, 3–31. DOI: 10.1016/b978-0-12-812986-9.00001-4
  • 10. Gonçalves, M.M.M., da Costa, A.C.A., Leite, S. G. F., Sant’Anna. G.L. 2007. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere, 69(11), 1815–1820.
  • 11. Heijne, A.T., Liu. F., Weijden, R. van der. Weijma, J., Buisman, C.J.N., Hamelers, H.V.M. 2010. Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell. Environmental Science & Technology. 44(11), 4376–4381. DOI: 10.1021/es100526g
  • 12. Hemalatha, M., Shanthi, S.J., Venkata, M.S. 2020. Self-Induced Bioelectro-Potential Influence on Sulfate Removal and Desalination in Microbial Fuel Cell. Bioresource Technology, 123326. DOI: 10.1016/j.biortech.2020.123326
  • 13. Jin, Z., Ci. M., Yang, W., Shen, D., Hu. L., Fang, C., Long, Y. 2020. Sulfate reduction behavior in the leachate saturated zone of landfill sites. Science of The Total Environment, 138946. DOI: 10.1016/j.scitotenv.2020.138946
  • 14. Kumar, R., Singh. L., Wahid, Z. A. 2015. Role of Microorganisms in Microbial Fuel Cells for Bioelectricity Production. Microbial Factories, 135–154. DOI: 10.1007/978-81-322-2598-0_9
  • 15. Kumbhar, P., Savla N., Banerjee, S., Mathuriya A.S., Sarkar, A., Khilari, S., Jadhav, D.A., Pandit, S. (2021). Chapter 26 - Microbial Electrochemical Heavy Metal Removal: Fundamental to the Recent Development, 521–542. DOI: 10.1016/B978-0-12-821881-5.00026-X
  • 16. Lens, P., Vallerol, M., Esposito, G., Zandvoort, M. 2002. Perspectives of sulfate reducing bioreactors in environmental biotechnology. Reviews in Environmental Science and Bio/Technology, 1(4), 311–325. DOI: 10.1023/a:1023207921156
  • 17. Leon‐Fernandez, L.F., Medina‐Díaz, H.L., Pérez, O.G., Romero, L.R., Villaseñor, J., Fernández‐Morales, F.J. 2021. Acid mine drainage treatment and sequential metal recovery by means of bioelectrochemical technology. Journal of Chemical Technology & Biotechnology, 96(6), 1543–1552. DOI: 10.1002/jctb.6669
  • 18. Liamleam, W., Annachhatre, A.P. 2007. Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452–463. DOI: 10.1016/j.biotechadv.2007
  • 19. Liang, F., Xiao, Y., Zhao, F. 2013. Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal, 218, 147–153. DOI: 10.1016/j.cej.2012.12.021
  • 20. Luo, H., Qin, B., Liu, G., Zhang, R., Tang, Y., Hou, Y. 2014a. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Frontiers of Environmental Science & Engineering, 9(3), 522–527. DOI: 10.1007/s11783-014-0633-5
  • 21. Luo, H., Liu. G., Zhang, R., Bai. Y., Fu, S., Hou, Y. 2014b. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials, 270, 153–159. DOI: 10.1016/j.jhazmat.2014.01.050
  • 22. Mathuriya, A.S., Yakhmi, J.V. 2014. Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters, 12(4), 483–494. DOI: 10.1007/s10311-014-0474-2
  • 23. Mikucka, W., Zielińska, M. 2020. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl Biochem Biotechnol, 192, 770–793. https://doi.org/10.1007/s12010-020-03343-5
  • 24. Pozo, G., Pongy, S., Keller, J., Ledezma, P., Freguia, S. 2017. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Res., 126, 411–420. DOI: 10.1016/j.watres.2017.09.058
  • 25. Rambabu, K., Banat, F., Pham, Q.M., Ho, S.-H., Ren, N.-Q., Show, P.L. 2020. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. DOI: 10.1016/j.ese.2020.100024
  • 26. Rodrigues, I.C.B., Leão, V.A. 2020. Producing electrical energy in microbial fuel cells based on sulphate reduction: a review. Environ. Sci. Pollut. Res., 27, 36075–36084. DOI: 10.1007/s11356-020-09728-7
  • 27. Sheoran, A.S., Sheoran. V., Choudhary, R.P. 2010. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Minerals Engineering, 23(14), 1073–1100. DOI: 10.1016/j.mineng.2010.07.001
  • 28. Tao, H.-C., Lei, T., Shi, G., Sun, X.-N., Wei, X.-Y., Zhang, L.-J., Wu, W.-M. 2014. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials, 264, 1–7. DOI: 10.1016/j.jhazmat.2013.10.057
  • 29. Timmers, P.H.A., Vavourakis, C.D., Kleerebezem, R., Damsté, J.S.S., Muyzer, G., Stams, A.J.M., Plugge, C.M. 2018. Metabolism and Occurrence of Methanogenic and Sulfate-Reducing Syntrophic Acetate Oxidizing Communities in Haloalkaline Environments. Frontiers in Microbiology, 9. DOI: 10.3389/fmicb.2018.03039
  • 30. Velasco, A., Ramírez, M., Volke-Sepúlveda, T., González-Sánchez, A., & Revah, S. 2008. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. Journal of Hazardous Materials, 151(2–3), 407–413.
  • 31. Vélez-Pérez, L.S., Ramirez-Nava, J., Hernández-Flores, G., Talavera-Mendoza, O., Escamilla-Alvarado, C., Poggi-Varaldo, H.M., López-Díaz, J.A. 2020. Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells. International Journal of Hydrogen Energy, 45(26). DOI: 10.1016/j.ijhydene.2019.12.037
  • 32. Venkata, M.S., Lenin, B.M. 2011. Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell. Bioresour Technol, 102, 8457–8465.
  • 33. Venkata, M.S., Velvizhi, G., Vamshi, Krishna, K., Lenin B.M. 2014. Microbial catalyzed electrochemical systems: A bio-factory with multi-facet applications. Bioresource Technology, 165, 355–364. DOI: 10.1016/j.biortech.2014.03.048
  • 34. Zhang, B., Zhang, J., Yang, Q., Feng, C., Zhu, Y., Ye, Z., Ni, J. 2012. Investigation and optimization of the novel UASB–MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Bioresource Technology, 124, 1–7. DOI: 10.1016/j.biortech.2012.08.045
  • 35. Zhang, M., Wang, H. 2014. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Minerals Engineering, 69, 81–90. DOI: 10.1016/j.mineng.2014.07.010
  • 36. Zhou, X., Fernández-Palacios, E., Dorado, A.D., Gamisans, X., Gabriel, D. 2022. Assessing main process mechanism and rates of sulfate reduction by granular biomass fed with glycerol under sulfidogenic conditions. Chemosphere, 286, 131649. DOI: 10.1016/j.chemosphere.2021.131649
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f1a137-7181-4bcc-aa1b-fecaaf70c788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.