PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The structure of electrical double layer formed on the kaolinite surface in the mixed system of cationic polyacrylamide and lead (II) ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bioavailability of toxic heavy metalsfor organisms depends mainly on the soil physicochemical properties, i.e. type and granulometric composition, pH value, redox potential, individual fractions content and microorganisms presence. The addition of artificial fertilizers rich in humic substances or polyacrylamide soil flocculants may also affect the content of easily absorbed heavy metal forms. Due to their chelating properties, the added substances can bind metal ions in the form of complexes characterized by low mobility in soil environment. As a consequence, the immobilization process takes place, which is a desirable phenomenon for organism health.The aim of the study was to determine the structure of electrical double layer formed on the kaolinite surface in the mixed system of cationic polyacrylamide and lead(II) cations. The influence of cationic PAM presence on the Pb(II) ions sorption on the kaolinite surface as well as heavy metal ion addition on the polymer adsorbed amount on the same clay mineral were studied. The adsorption and electrokinetic properties of studied kaolinite/CT PAM/Pb(II) systems were determined based on the spectrophotometric study, zeta potential measurements as well as potentiometric titration.
Rocznik
Strony
1339--1349
Opis fizyczny
Bibliogr. 45 poz., rys., wz., wykr.
Twórcy
  • Department of Radiochemistry and Colloids Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq.3, 20-031 Lublin, Poland
  • Department of Radiochemistry and Colloids Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq.3, 20-031 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
Bibliografia
  • ADEBOWALE, K. O., UNUABONAH, I. E., OLU-OWOLABI, A. E., 2006. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130-139.
  • ADRIANO, D., 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer Verlag, New York.
  • BAI, L., WANG, Y., ZHOU, Y., LIU, L., YAN, Z., LI, F., 2015. Research on the process-based risk evaluation method of groundwater pollution for contaminated site. Water Sci. Technol. Water Supply. 16, 150-162.
  • BLAKE, L., GOULDING, K. W. T., 2002. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and egetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant and Soil 240, 235-251.
  • BRADY, P. V., CYGAN, R. T., NAGY, K. L., 1996. Molecular controls on kaolinite surface charge. J. Colloid Interf. Sci. 183(2), 356-364.
  • CHOOTO, P., WARARATANANURAK, P., INNUPHAT, C., 2010. Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode. Sci. Asia 36, 150-156.
  • CURYŁO, T., JASIEWICZ, C., 1998. Porównanie wpływu wieloskładnikowych nawozów organiczno-mineralnych i mineralnych na plonowanie oraz pobieranie metali ciężkich przez rośliny. Fol. Univ. Agr. Stet.–Agr. 72, 35-41.
  • DAGNALL, R. M., WEST, T. S., YOUNG, P., 1965. Determination of lead with 4-(2-pyridylazo)-resorcinol—II: Application to steel, brass and bronze.Talanta 12, 583-588.
  • DE MORA, A. P., ORTEGA-CALVO, J. J., GABRERA, F., MADEJON, E., 2005. Changes in enzyme activities and microbial after “in situ” remediation of a heavy metal-contaminated soil. Appl. Soil Ecol. 28, 125-137.
  • DENG, Y., DIXON, J. B., WHITE, G. N., LOEPPERT, R. H., JUO, A. S. R., 2006. Bonding between polyacrylamide and smectite.Colloids Surf. A Physicochem. Eng. Asp. 281, 82-91.
  • EFFRON, D., DE LA HORRA, A. M., DEFRIERI, R. L., FONTANIVE, V., PALMA, P. M., 2004. Effect of cadmium, copper, and lead on different enzyme activities in a native forest soil. Comm. Soil Sci. Plant Anal. 35, 1309-1321.
  • GAWĘDA, M., 1995. The effect of organic matter in soil on the lead level in edible parts of lettuce and carrot. Acta Hort. 379, 221-228.
  • GĘBSKI, M., 1998. Czynniki glebowe oraz nawozowe wpływające na przyswajanie metali ciężkich przez rośliny. Post. Nauk Roln. 5, 3-16.
  • HAMBY, D. M., 1996. Site remediation techniques supporting environmental restoration activities –a review. Sci. Total Environ. 191, 203-224.
  • HAO, X., CHANG, C., 2002. Effect of 25 annual cattle manure applications on soluble and exchangeable cations in soil. Soil Sci. 2, 126-134.
  • HUNTER, R. J., 1981. Zeta Potential in Colloid Science, Academic Press, New York.
  • JANUSZ, W., 1994. Electrical double layer at the metal oxide/electrolyte interface in interfacial forces and fields: theory and applications.M. Decker (Ed.), Surfactant Sci, vol. 85, chapter 4, New York.
  • JIANG, M., JIN, X., LU, X-Q., CHEN, Z., 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252, 33-39.
  • KABATA-PENDIAS, A., PENDIAS, H., 1999. Biogeochemia pierwiastków śladowych. Wyd. II. PWN, Warsaw, Poland.
  • KARVE, M., RAJGOR, R. V., 2007. Solid phase extraction of lead on octadecyl bonded silica membrane disk modified with Cyanex302 and determination by flame atomic absorption spectrometry. J. Hazard. Mater. 141, 607-613.
  • KUNITO, T., SAEKI, K., GOTO, S., HAYASHI, H., OYAIZU, H., MATSUMOTO, S., 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour. Technol. 79, 135-146.
  • LAIRD, D. A. D., 1997. Bonding between polyacrylamide and clay mineral surfaces. Soil Sci. 162(11), 826-832.
  • LEDUC, D., TERRY, N., 2005. Phytoremediation of toxic trace elements in soil and water. Environ. Biotechnol. 32, 514-520.
  • LEE, L.T., RAHBARI, R., LECOURTIER, J., CHAUVETEAU, G., 1991. Adsorption of polyacrylamides on the different faces of kaolinites. J. Colloid Interf.Sci. 147, 351-357.
  • LORENZ, N., HINTEMANN, T., KRAMAREWA, T., KATAYAMA, A., YASUTA, T., MARSCHNER, P., KANDELER, E., 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol. Biochem. 38, 1430-1437.
  • MAJEWSKA, M., KUREK, E., 2002. Mikroorganizmy –czynnikiem modyfikującym stężenie kadmu w roztworze glebowym. Post. Nauk Roln. 1, 3-13.
  • MARECIK, R., KRÓLICZAK, P., CYPLIK, P., 2006. Fitoremediacja –alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia 3, 88–97.
  • MARMIROLI, N., MCCUTCHEON, S. C., 2003. Making phytoremediation a successful technology. Phytoremediation. Transformation and Control of Contaminants.Jon Wiley & Sons, Inc. Hoboken, New Jersey, USA.
  • MERCIK, S., KUBIK, I., 1995. Chelatowanie metali ciężkich przez kwasy humusowe oraz wpływ torfu na pobieranie Zn, Pb, Cd przez rośliny. Zesz. Prob. Post. Nauk Roln. 422, 19-30.
  • MIN, F., ZHAO, Q., LUI, L., 2013. Experimental study on the electrokinetics of kaolinite particles in aqueous suspension.Physicochem. Probl. Min. 49, 659-672.
  • MPOFU, P., ADDAI-MENSAH, J., RALSTON, J., 2003. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviorof kaolinite dispersions. Int. J. Miner. Process. 71, 247-268.
  • NDLOVU, B., FARROKHPAY, S., FORBES, E., BRADSHAW, D., 2015. Characterisation of kaolinite colloidal and flow behaviorvia crystallinity measurements. Powder Technol. 269, 505-512.
  • NOSAL-WIERCIŃSKA, A., KALISZCZAK, W., GROCHOWSKI, M., WIŚNIEWSKA, M., KLEPKA, T., 2018. Effects of mixed adsorption layers of 6-mercaptopurine –Triton X-100 and 6-mercaptopurine –Tween 80 on the double layer parameters at the mercury/chlorates(VII) interface. J. Molec. Liq. 253, 143-148.
  • NOSAL-WIERCIŃSKA, A., KALISZCZAK, W., DRAPSA, A., GROCHOWSKI, M., WIŚNIEWSKA, M., KLEPKA, T., 2019. Influence of nonionic surfactants and water activity on to adsorption of 6-thioguanine at the mercury/chlorates(VII) interface. Adsorption, 25, 251-256.
  • OLAYIWOLA, H. A., ABUDALAWAL, L., ADEWUYI, G. K., AZEEZ, M. O., 2017. Heavy metal contents in soil and plants at dumpsites: A case study of awotan and ajakanga dumpsite Ibadan, Oyo State, Nigeria. J. Environ. Earth Sci. 7,11-24.
  • RIEUWERTS, J. S., THORNTON, I., FARAGO, M. E., ASHMORE, M. R., 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem. Spec. Bioavailab. 10, 61-75.
  • SHAHAT, A., HASSAN, H. M. A., AZZAZY, H. M. E., EL-SHARKAWY, E. A., ABDOUD, H. M., AWUALE, M. D. R., 2018. Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem. Eng. J. 332, 377-386.
  • SHARMA, P., PANDEY, S., 2014. Status of Phytoremediation in World Scenario. Int. J. Environ. Bioremediat. Biodegrad. 2, 178-191.
  • SKWAREK, E., JANUSZ, W., 2019. Adsorption of Ba 2+ions at the hydroxyapatite/NaCl solution interface. Adsorption. 25, 279-288.
  • USARLA, S., MEDINA, V. F , MCCUTCHEON, S.C., 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng. 18, 647-658.
  • TSCHAPEK, M., TCHEICHVILI, L., WASOWSKI, C., 1974. The point of zero charge (pzc) of kaolinite and SiO2+ Al2O3 mixtures. Clay Miner. 10, 219-229.
  • TYLER, G., OLSSON, T., 2001. Concentrations of 60 elements in the soil solution as related to the soil acidity. Europ. J. Soil Sci. 52, 151-165.
  • WIŚNIEWSKA, M., CHIBOWSKI, S., URBAN, T., 2014. Effect of the presence of cationic polyacrylamide on the surface properties of aqueous alumina suspension -stability mechanism. Appl. Surf. Sci. 320, 843-851.
  • WIŚNIEWSKA, M., CHIBOWSKI, S., URBAN, T., 2017. Comparison of adsorption affinity of ionic polyacrylamide for the surfaces of selected metal oxides. Adsorption Sci. Technol. 35, 582–591.
  • WIŚNIEWSKA, M., FIJAŁKOWSKA, G., SZEWCZUK-KARPISZ, K., URBAN, T., NOSAL-WIERCIŃSKA, A., WÓJCIK G. 2019. Comparison of adsorption affinity of anionic and cationic polyacrylamides for montmorillonite surface in the presence of chromium(VI) ions. Adsorption 25, 41-50.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1f10503-fd3f-416f-9871-84c8b4abd83c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.