PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hard and superhard nanolaminate and nanocomposite coatings for machine elements based on Ti6Al4V alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Verification of a series of hybrid treatments of Ti6Al4V alloy consisting of primary diffusion hardening of the substrate with subsequent deposition of wear resistant coatings. Design/methodology/approach: Different nanolaminate and nanocomposite coatings were deposited with use of four different methods including a newly developed high density gas pulsed plasma MS technique. After deposition the coatings were investigated using OM, SEM, HRTEM, XRD, XPS, nanoindentation, Daimler-Benz, ball-on-plate and scratch tests. Findings: Besides an important increase of Ti6Al4V alloy hardness much greater further increase of hardness was obtained due to coatings deposition up to 53 GPa in case of a nanolaminate coating and to 47 GPa in case of a nanocomposite nc-TiN/a-SiN coating. At the same time the volume wear coefficient decreases several orders of magnitude for all the coatings. Simultaneously the friction coefficient decreased to a great extent except for the nc-TiN/a-SiN coating. Research limitations/implications: High density gas pulsed plasma magnetron sputtering is an effective method for superhard coatings deposition, however the roughness of the deposited nc-TiN/a-SiN coating was greater than after conventional magnetron sputtering. This finding needs further experimental and theoretical investigation. Practical implications: Greater surface roughness and high resistance to wear of the coatings synthesized using the newly developed gas pulsed plasma magnetron sputtering deposition limits their application to wear protection of cutting tools rather than for friction reduction in tribological couples. Originality/value: Applicability of the broad spectrum of nanolaminate and nanocomposite coatings as well as different CVD and PVD techniques for an improvement of tribological properties of Ti6Al4V alloy was analyzed in the paper including a newly developed original high density gas pulsed plasma magnetron sputtering technique.
Rocznik
Strony
455--462
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
  • Department of Metallurgy & Industrial Information Technology, AGH-University of Science & Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
  • Department of Metallurgy & Industrial Information Technology, AGH-University of Science & Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lódź, Poland
Bibliografia
  • [1] B. G. Wendler, W. Pawlak, Low friction and wear resistant coating systems on Ti6Al4V alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 207-210.
  • [2] A.F. Yetim, F. Yildiz, Y. Vangolu, A. Alsaran, A. Celik, Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy, Wear 267 (2009) 2179-2185.
  • [3] A.A. Voevodin, J.S. Zabinski, C. Muratore, Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings, Tsinghua Science and Technology 10/6 (2005) 665-679.
  • [4] S. Yang, D. Camino, A.H.S. Jones, D.G. Teer, Deposition and tribological behaviour of sputtered carbon hard coatings, Surface and Coatings Technology 124 (2000) 110-116.
  • [5] A. Czyżniewski, Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings, Thin Solid Films 433 (2003) 180-185.
  • [6] B.G. Wendler, P. Nolbrzak, W. Pawlak, Adam Rylski, Structure and properties of WC1-x/C coatings deposited by reactive magnetron sputtering on ASP2023 HSS steel and monocrystalline Si substrates, Materials Engineering 165-166/5-6 (2008) 655-657 (in Polish).
  • [7] T. Zehnder, J. Patscheider, Nanocomposite TiC/a-C:H hard coatings deposited by reactive PVD, Surface and Coatings Technology 133-134 (2000) 138-144.
  • [8] Y.T. Pei, D. Galvan, J.Th.M. De Hosson, C. Strondl, Advanced TiC/a-C:H nanocomposite coatings deposited by magnetron sputtering, Journal of the European Ceramic Society 26 (2006) 565–570.
  • [9] J. Lin, J.J. Moore, B. Mishra, M. Pinkas, W.D. Sproul, Syntheses and characterization of TiC/a:C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS), Thin Solid Films 517 (2008) 1131-1135.
  • [10] G. Gassner, P.H. Mayrhofer, J. Patscheider, C. Mitterer, Thermal stability of nanocomposite CrC/a-C:H thin films, Thin Solid Films 515 (2007) 5411-5417.
  • [11] W. Pawlak, B. Wendler, Multilayer, hybrid PVD coatings on Ti6Al4V titanium alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 660-667.
  • [12] D. Batory, A. Stanishevsky, W. Kaczorowski, The effect of deposition parameters on the properties of gradient a-C:H/Ti layers, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 381-386.
  • [13] K. Włodarczyk, M. Makówka, P. Nolbrzak, B. Wendler, Low friction and wear resistant nanocomposite nc-MeC/a-C and nc-MeC/a-C:H coatings, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 364-360.
  • [14] R. Gåhlin, M. Larsson, P. Hedenqvist, Me-C:H coatings in motor vehicles, Wear 249/3-4 (2001) 302-309.
  • [15] S. Vepřek, S. Mukherjee, P. Karvankova, H.-D. Männling, J.L. He, K. Moto, Limits to the strength of super- and ultra-hard nanocomposite coatings, Journal of Vacuum Science and Technology A 21/3 (2003) 532-544.
  • [16] B.G. Wendler, T. Liśkiewicz, Ł. Kaczmarek, B. Januszewicz, D. Rylska, S. Fouvry, A. Rylski, M. Jachowicz, Diffusion Strengthening of Ti6Al4V Alloy in Ar + O2 Glow Discharge Plasma, Materials Engineering 3/140 (2004) 681-685.
  • [17] B.G. Wendler, M. Danielewski, K. Przybylski, A. Rylski, Ł. Kaczmarek, M. Jachowicz, New type AlMo-, AlTi- or Si-based magnetron sputtered protective coatings on metallic substrates, Journal of Materials Processing Technology 175 (2006) 427-432.
  • [18] B.G. Wendler, J. Dora, I.F. Progalskiy, C. Siemers, W. Pawlak, A. Rylski, M. Makówka, P. Nolbrzak, K. Włodarczyk, A method of a high density gas pulse plasma magnetron sputtering, Patent application No. P-391523 submitted to the Polish Patent Office the 15th of June 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1eff640-c1f8-4765-8a3b-42f50e5312b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.