PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric Resistivity Distribution in the Earth’s Crust and Upper Mantle for the Southern East European Platform and Crimea from Area-wide 2D Models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previously obtained magnetotelluric 2D models for 30 profiles made it possible to create an overview model of electric resistivity for the territory between 28°E and 36°E and between 44.5°N and 52.5°N. It allows us to distinguish a number of low resistivity objects (LRO) with resistivities lower than 100 Ω m the Earth’s crust and mantle. Two regional conductivity anomalies are traced. The Kirovograd conductivity anomaly extends south to the Crimea mountains. A new regional conductivity anomaly (Konkskaya) can be distinguished along the southern slope of the Ukrainian Shield from 29° to 34°E. In addition, many local LROs have been identified. According to the modeling results, the local low resistivity objects on the East European Platform appear along fault zones activated during last 5–7 M years and the model suggests their relation to known zones of graphitization and polymetallic ore deposits. Local LROs in the Dnieper–Donets Basin correlate with the main oil and natural gas fields in this area. The depth of the anomalous objects amounts to 5–22 km. This is consistent with the hypotheses that hydrocarbon deposits are related to generation and transport zones of carbon-bearing fluids.
Czasopismo
Rocznik
Strony
131--139
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • S.I. Subbotin Name Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, Kiev, Ukraine
  • S.I. Subbotin Name Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, Kiev, Ukraine
Bibliografia
  • 1. Bologna MS, Padilha AL, Pádua MB, Vitorello Í, Chamalaun FH (2014) Paraguay-araguaia belt conductivity anomaly: a fundamental tectonic boundary in South American Platform imaged by electromagnetic induction surveys. Geochem Geophys Geosyst 15(3):509–515. https://doi.org/10.1002/2013gc004970
  • 2. Caldwell RL (1969) Electrical methods of exploration in the Soviet Union, in unconventional methods in exploration for petroleum and natural gas. Southern Methodist University, Dallas, pp 87–104
  • 3. Ernst T, Brasse H, Cerv V, Hoffmann N, Jankowski J, Jozwiak W, Kreutzmann A, Neska A, Palshin N, Pedersen LB, Smirnov M, Sokolova E, Smirnov M (2008) Electromagnetic images of the deep structure of the Trans-European Suture Zone beneath Polish Pomerania. Geophys Res Lett 35(15):L15307. https://doi.org/10.1029/2008GL034610
  • 4. Galetskij LS, Shevchenko TP (2006) New understanding of the structure and ore crust Ukraine. Geofyz J 28(5):57–65 (in Ukrainian)
  • 5. Geoffrey PGLASBY (2006) Abiogenic origin of hydrocarbons: an historical overview. Resour Geol 56(1):83–96. https://doi.org/10.1111/j.1751-3928.2006.tb00271.x
  • 6. Gintov OB (2005) Field tectonophysics and its application in the study of deformations of the earth’s crust of Ukraine. Phoenix, Kiyv, p 572 (in Russian)
  • 7. Gordienko VV, Gordienko IV, Zavorodnyaya OV, Logvinov M, Tarasov VN, Usenko OV, Kovacikova S (2005) Ukranian shield (geophysica, deep processing). Korvin Press, Kiev, p 210 (in Russian)
  • 8. Gordienko VV, Gordienko IV, Zavgorodnyaya OV, Kovachikova S, Logvinov IM, Pec J, Tarasov VN, Usenko OV (2006) Dnieper-Donetsk Basin (Geophysics, deep processes). Korvin Press, Kiev, p 144 (in Russian)
  • 9. Hoffmann N, Hengesbach L, Friedrichs B, Brink H-J (2008) The contribution of magnetotellurics to an improved understanding of the North German Basin—review and new results. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(4):591–606. https://doi.org/10.1127/1860-1804/2008/0159-0591)
  • 10. Ingerov AI, Rokityansky II, Tregubenko VI (1999) Forty years of MTS studies in the Ukraine. Earth Planet Space 51:1127–1133
  • 11. Ivanyuty MM, et al. eds.(1998) Atlas of oil and gas in Ukraine, vol I–III. Ukrainian Oil and Gas Academy, Lviv. (in Ukrainian)
  • 12. Keller GV (1968) Electrical prospecting for oil: quarterly of the Colorado school of mines, vol 63, 2nd edn, p 267
  • 13. Keller GV (1969) Electromagnetics may be the key to direct oil finding: world oil, Dec, pp 85–88
  • 14. Kirovograd ore district (2013) Deep structure. Tectonophysical analysis. Deposits of ore minerals. Starostenko VI, Gintov OB, editor. Simple people. Kyiv. p 500. (in Russian)
  • 15. Kovacikova S, Logvinov I, Nazarevych A, Nazarevych L, Pek J, Tarasov V, Kalenda P (2016) Seismic activity and deep conductivity structure of the Eastern Carpathians. Studia Geophysica et Geodaetica 60(2):280–296
  • 16. Logvinov IM (2002) Geoelectric parameters of sedimentary of the Dnieper-Donets basin according to the data of two-dimensional modeling of MTS results. Geofiz J 24(6):79–92 (in Russian)Google Scholar
  • 17. Logvinov IM (2015) Deep geoelectrical structure of the central and Western Ukraine. Acta Geophys 63(5):1216–1230. https://doi.org/10.1515/acgeo-2015-0049
  • 18. Logvinov IM, Tarasov VN, Tregubenko VI (2016) Geoelectric model of the junction zones of the Scythian plate with the East European Platform and the mountainous Crimea. Dokladi NAS Ukraine 7:78–85. https://doi.org/10.15407/dopovidi2016.07.078 (in Russian)
  • 19. National Atlas of Ukraine (2007) Cartographia. State Scientific Production Enterprise, Kyiv, p 440 (in Ukrainian)
  • 20. Rokityansky II (1982) Geoelectromagnetic investigation of the earth’s crust and mantle. Springer, Berlin. https://doi.org/10.1007/978-3-642-61801-7
  • 21. Rokityansky II, Logvinov IM, Luginina NA (1969) Magnitovariational profiling on the Ukrainian shield Izv, vol 3. The USSR Academy of Sciences. Fizika of Earth, Moskva, pp 100–111 (in Russian)
  • 22. Semenov VYu, Pek J, Adam A, Jozwiak W, Ladanyvskyy B, Logvinov I, Pushkarev P, Vozar J (2008) Electrical structure of the upper mantle beneath Central Europe: results of the CEMES project. Acta Geophys 56(4):957–981
  • 23. Sephton Mark A, Hazen Robert M (2013) On the origins of deep hydrocarbons. Rev Mineral Geochem 75:449–465. https://doi.org/10.2138/rmg.2013.75.14
  • 24. Sherwood Lollar B, Westgate TD, Ward JD, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 446(6880):522–524. https://doi.org/10.1038/416522a
  • 25. Siripunvaraporn W, Egbert G (2000) An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics 65(3):791–803
  • 26. Varentsov IVM, Gordienko VV, Gordienko IV, Zavgorodnyaya OV, Kovachikova S, Logvinov IM, Tarasov VN, Tregubenko VI (2013) The slope of the Voronezh crystalline massif (geophysics, deep processes). Logos, Kiev, p 112 (in Russian)
  • 27. Verkhovtseff V (2006) Newest vertical crustal movements in Ukraine, their relationship with linear and circular structures. In: Vyzhva SA (ed) Power earth, its geological and environmental displays, scientific and practical use. Kyiv National University, Kyiv, pp 129–137 (in Ukrainian)
  • 28. Yatsenko VG (1998) Regularities of the spatial arrangement of graphite manifestations on the Ukrainian shield. Aspects of mineralogy in Ukraine. GNC ROS, Kiyv, pp 254–270 (in Russian)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1ecd1f8-6c64-4a99-ab49-149932837f46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.