Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The processes of machining have vital influence on the operating properties of machine parts because they ensure the formation of the required geometrical structure of the working surfaces and the condition of the top layer. In this paper the influence of emulsion mist parameters on Ra, Rz and RSm surface roughness parameters is described when finishing the turning of C45 carbon steel. It was found that cutting parameters have considerably greater influence on roughness parameters in comparison with emulsion mist conditions. When increasing cutting speed from 100 to 300 m/min Ra and Rz values decrease nearly 2 times, but RSm value does not depend on speed. When increasing feed rate from 0.1 to 0.2 mm/rev Ra, Rz and RSm values increase more than twice. Changes of emulsion mass flow and compressed air flow affect roughness parameters reach 9–15% of maximum. It was shown that Parameter Space Investigation method can be used efficiently for quick analysis of tested parameters and optimization of their values.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
144--149
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Zielona Gora, 4 Prof. Z. Szafrana Street, 65-516 Zielona Gora, Poland
autor
- Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-816 Lublin, Poland
autor
- Faculty of Mechanical Engineering and Management, Poznan University of Technology 3 Piotrowo Street, 60-965 Poznan, Poland
Bibliografia
- 1. Chang W.R., Hirvonen M., Grönqvist R. 2004. The effects of cut-off length on surface roughness parameters and their correlation with transition friction. Safety Science, 42(8), 755769.
- 2. ISO 3685:1993. Tool-life testing with single-point turning tools.
- 3. Kubiak K.J., Liskiewicz T.W., Mathia T.G. 2011. Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting. Tribology International. 44(11), 1427–1432.
- 4. Legutko S., Nosal S. 2004. Kształtowanie technologicznej i eksploatacyjnej warstwy wierzchniej części maszyn. Ośrodek Wydawnictw Naukowych PAN, Poznań.
- 5. Maruda R.W., Krolczyk G.M., Feldshtein E., Pusavec F., Szydlowski M., Legutko S., Sobczak-Kupiec A. 2016. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture, 100, 8192.
- 6. Maruda R.W., Legutko S., Krolczyk G.M., Lukianowicz C., Stoić A. 2015. Effect of anti-wear additive on cutting tool and surface layer of workpiece state under MQCL conditions. Tehnicki Vjesnik-Technical Gazette, 22(5), 12191223.
- 7. Maruda R.W., Legutko S., Krolczyk G.M., Raos P. 2015. Influence of cooling conditions on the machining process under MQCL and MQL conditions. Tehnicki Vjesnik-Technical Gazette, 22(4), 965–970.
- 8. Maruda R.W., Feldshtein E., Legutko S, Królczyk G.M. 2015. Research on emulsion mist generation in the conditions of Minimum Quantity Cooling Lubrication (MQCL). Tehnicki Vjesnik-Technical Gazette, 22(5), 12131218.
- 9. Maruda R.W., Legutko S., Krolczyk G.M., Hloch S., Michalski M. 2015. An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. International Journal of Surface Science and Engineering, 9(5), 452–465.
- 10. Meine K., Schneider T., Spaltmann D., Santner E. 2002. The influence of roughness on friction. Part I: The influence of a single step. Wear, 253(7-8), 725732.
- 11. Meine K., Schneider T., Spaltmann D., Santner E. 2002 The influence of roughness on friction. Part II: The influence of multiple steps. Wear, 253(7-8), 733738.
- 12. Nadolny K., Wojtewicz M., Sienicki W., Herman D. 2015. An analysis of centrifugal MQL supply system potential in the internal cylindrical grinding process. Archives of Civil and Mechanical Engineering, 15(3), 639–649.
- 13. Park K.H., Olortegui-Yume J., Yoon M.C., Kwon P. 2010. A study on droplets and their distribution for minimum quantity lubrication (MQL). International Journal of Machine Tools and Manufacture. 50(9), 824833.
- 14. Sing R., Melkote S.N., Hashimoto F. 2005. Frictional response of precision finished surfaces in pure sliding. Wear, 258, 15001509.
- 15. Spijker P., Anciaux G., Molinari J.F. 2013. Relations between roughness, temperature and dry sliding friction at the atomic scale. Tribology International, 59, 222229.
- 16. Statnikov R.B., Statnikov A. 2011. The Parameter Space Investigation Method Toolkit. Artech House, Boston/London.
- 17. Sulima A.M., Šulov B.A., Âgodkin Û.D. 1988. Poverhnostnyj sloj i ékspluatacionnye svojstva detalej mašin, Mašinostroenie, Moskva.
- 18. Twardowski P., Wojciechowski S., Wieczorowski M., Mathia T.G. 2011. Surface roughness analysis of hardened steel after high-speed milling. Scanning, 33(5), 386395.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1eb9629-f8d7-4ef3-85f2-06d11b5663bf