PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interpretation of soil erosion in a Polish loess area using OSL, 137Cs, 210Pbex, dendrochronology and micromorphology – case study: Biedrzykowice site (s Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Loess areas used for agriculture are susceptible to soil erosion. The intensive process of soil erosion in Polish loess areas began with the onset of the Neolithic and has continued intermittently until today. This work presents the results of soil erosion from simultaneous use of the 137Cs and 210Pbex methods on an agricultural field located on loess slope. Moreover, to establish the age of accumulated sediment connected with water slope erosion, OSL dating, selected physicochemical and micromorphological analyses were applied. The reference values of the 137Cs and 210Pbex fallout for the studied site (Biedrzykowice, the Proszowice Plateau, Małopolska Upland) equal 2627 (45% connected with Chernobyl) and 4835 Bq·m–2, respectively. The results of the 137Cs and 210Pbex inventories measured for the agricultural field range from 730 to 7911 and from 1615 to 11136 Bq·m–2, respectively. The mean soil erosion is about 2.1 kg·m–2·a–1 (about 1.4 mm·a–1). The accumulation of the colluvial sediments started in the Neolithic and drastically increased in the Middle Ages. The examined gully catchment in Biedrzykowice has probably developed quite rapidly as a result of increased erosion. This resulted in the abandonment of this area as farmland and, consequently, in the minimization of water erosion on the slope due to the entrance of woody vegetation in this area. Erosion processes were highly intensified during the last 70 years as a result of deforestation after World War II and intensive agricultural reuse of this area after a break, as indicated by isotope measurements and dendrochronology.
Wydawca
Czasopismo
Rocznik
Strony
57--78
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
  • Kazimerz Wielki University, Institute of Geography, Mińska 15, Bydgoszcz, Poland
autor
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
  • Maria Curie-Skłodowska University, Faculty of Earth Sciences and Spatial Management, Al. Kraśnicka 2d, 20-718 Lublin, Poland
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37–50.
  • 2. Aitken MJ, 1985. Thermoluminescence Dating. London. Academic Press, 359 pp.
  • 3. Aitken MJ, 1998. An introduction to optical dating. Oxford. Oxford University Press: 267 pp.
  • 4. Baskaran M, 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. Journal of Environmental Radioactivity 102: 500–513, DOI 10.1016/j.jenvrad.2010.10.007.
  • 5. Bateman MD, Frederick CD, Jaiswal MK and Singhvi AK, 2003. Investigations into the potential effects of pedoturbation on luminescence dating. Quaternary Science Reviews 22: 1169–1176, DOI 10.1016/S0277-3791(03)00019-2.
  • 6. Bluszcz A, 2000. Datowanie luminescencyjne osadów czwartorzędowych – teoria, ograniczenia, problemy interpretacyjne. Geochronometria 17, 104 pp. (in Polish, with English summary).
  • 7. Bodoque JM, Díez-Herrero A, Martín-Duque JF, Rubiales JM, Godfrey A, Pedraza J, Carrasco RM and Sanz MA, 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: two examples from Central Spain. Catena 64: 81–102, DOI 10.1016/j.catena.2005.08.002.
  • 8. Bortolot VJ, 2000. A new modular high capacity OSL reader system. Radiation Measurements 32: 751–757, DOI 10.1016/S1350- 4487(00)00038-X.
  • 9. Cutshall NH, Larsen IL and Olsen CR, 1983. Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nuclear Instruments and Methods in Physics Research 206: 309–312, DOI 10.1016/0167-5087(83)91273-5.
  • 10. Dotterweich M, 2003. Land Use and Soil Erosion in northern Bavaria during the last 5000 Years. (In:) Lang A, Hennrich K, and. Dikau R (Eds.):, LNES, Springer-Verlag, 101: 201–229.
  • 11. Dotterweich M, 2008. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment — A review. Geomorphology 101: 192–208, DOI 10.1016/j.geomorph.2008.05.023
  • 12. Dotterweich M and Dreibrodt S, 2011. Past land use and soil erosion processes in central Europe. Pages news 2: 49–51.
  • 13. Dubois G and Bossew P, 2003. Chernobyl 137Cs deposition in Austria: analysis of the spatial correlation of the deposition levels. Journal of Environmental Radioactivity 65: 29–45, DOI 10.1016/S0265- 931X(02)00062-0.
  • 14. Fuchs M, Lang A and Wagner GA, 2004. The history of Holocene soil erosion in the Phlious Basin, NE Peloponnese, Greece, based on optical dating. The Holocene 14: 334–345, DOI 10.1191/0959683604hl710rp.
  • 15. Fuchs M and Lang A, 2009. Luminescence dating of hillslope deposits – A review. Geomorphology 109: 17–26, DOI 10.1016/j.geomorph.2008.08.025.
  • 16. Fuchs M, Will M, Kunert E, Kreutzer S, Fischer M and Reverman R, 2011. The temporal and spatial quantification of Holocene sediment dynamics in a meso-scale catchment in northern Bavaria, Germany. The Holocene 21: 1093–1104, DOI 10.1177/0959683611400459.
  • 17. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part 1, experimental design and statistical models. Archaeometry 41: 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
  • 18. Gärtner HW, Schweingruber FH and Dikau R, 2001. Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19: 81–91.
  • 19. Golosov V, Walling DE, Panin AV, Stukin ED, Kvasnikowa EV and Ivanova NN, 1999. The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in central Russia. Applied Radiation and Isotopes 51: 341–352, DOI 10.1016/S0969-8043(99)00050-0.
  • 20. Guerin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors update. Ancient TL 29: 5–8.
  • 21. He Q and Walling DE, 1996. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. Journal of Environmental Radioactivity 30: 117–137, DOI 10.1016/0265-931X(96)89275-7.
  • 22. He Q and Walling DE, 1997. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils. Applied Radiation and Isotopes 48: 677–690, DOI 10.1016/S0969-8043(96)00302-8.
  • 23. Heer AJ, Adamiec G and Moska P, 2012. How many grains are there on a single aliquot? Ancient TL 30(1): 9–16.
  • 24. Isajenko K, Fujak M and Piotrowska B, 2014. Monitoring skażenia 137Cs w glebie w latach 2012–2013. (Monitoring of Cs-137 concentration in soil in 2012-2013). Centralne Laboratorium Ochrony Radiologicznej Zakład Dozymetrii Warszawa (in Polish).
  • 25. Jary Z, 2007. Record of Climate Changes in Upper Pleistocene loesssoil sequences in Poland and western part of Ukraine). Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wroclawskiego 1, Wroclaw (in Polish, with English abstract).
  • 26. Jersak J, 1973. Lithology and stratigraphy of the loess on the southern Polish Uplands. Acta Geographica Lodziensia 32: 1–139.
  • 27. Jersak J, Sendobry K and Śnieszko Z, 1992. Postwarciańska ewolucja wyżyn lessowych w Polsce. (Post-Wartanian evolution of loess upland in Poland). Wyd. UŚ, Katowice 1227, 196 pp. (in Polish).
  • 28. Kato H, Onda Y and Tanaka Y, 2010. Using 137Cs and 210Pbex measurements to estimate soil redistribution rates on semi-arid grassland in Mongolia. Geomorphology 114: 508–519, DOI 10.1016/j.geomorph.2009.08.009.
  • 29. Kemp R, 2001. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Reviews 54: 145–156, DOI 10.1016/S0012-8252(01)00045-9.
  • 30. Kondracki J, 2002. Geografia regionalna Polski. (Regional geography of Poland). PWN, Warszawa. (in Polish).
  • 31. Konecka-Betley K, 2002. Paleosols of different age developed from loess in Poland. In: B. Manikowska K, Konecka-Betley K, Bednarek R, (eds.), Problemy paleopedologii w Polsce, TN, Łódź: 135– 163.
  • 32. Kruk J, Milisauskas S, Alexandrowicz SW and Śnieszko Z, 1996. Osadnictwo i zmiany środowiska naturalnego wyżyn lessowych, (Environmental Changes and settlement on the loess Uplands. An archaeological and palaeogeographical study on the Neolithic In the Nidzica bassin (Summary). Kraków (Instytut Archeologii i Etnologii PAN). pp: 7–139 (in Polish).
  • 33. Kruk J and Milisauskas S, 1999. Rozkwit i upadek społeczeństw rolniczych neolitu. The Rise and Fall of NeolithicSocietes. Kraków. Instytut Archeologii i Etnologii Polskiej Akademii Nauk. (in Polish).
  • 34. Kruk J, Lityńska-Zając M and Milisauskas S, 2016. Gospodarka roślinna w neolicie. Studium przypadku – Bronocice. (Neolithic Plant Cultivation at Bronocice). IAiE PAN, 224 pp. (in Polish).
  • 35. Lang A, 2003. Age and source of colluvial sediments at Vaihingen-Enz, Germany. Catena 38: 89–107, DOI 10.1016/S0341- 8162(99)00068-5.
  • 36. Lee J and Kemp RA, 1992. Thin section of unconsolidated sediments and soils. a recipe, Thin Section Laboratory, Sediment Analysis Suite, Geography Department, Royal Holloway, University of London, Egham: 1–32.
  • 37. Lu XX and Higgitt DL, 2000. Estimating erosion rates on sloping agricultural land in the Yangtze Three Gorges, China, from caesium-137 measurements. Catena 39: 33–51, DOI 10.1016/S0341- 8162(99)00081-8.
  • 38. Li M, Li Z, Yao W and Liu P, 2009. Estimating the erosion and deposition in a small watershed by the 137Cs tracing method. Applied Radiation and Isotopes 67: 362–366, DOI 10.1016/j.apradiso.2008.10.011.
  • 39. Mabit L, Benmansour M and Walling DE, 2008. Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7 Be for assessing soil erosion and sedimentation. Journal of Environmental Radioactivity 99: 1799–1807, DOI 10.1016/j.jenvrad.2008.08.009.
  • 40. Mabit L, Benmansour M, Abril JM, Walling DE,Meusburger K, Iurian AR, Bernard C, Tarjan S, Owens PN, Blake WH and Alewell C, 2014. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Eart-Science Reviews 138: 335–351, DOI 10.1016/j.earscirev.2014.06.007.
  • 41. Malik I, 2006a. Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: example of the Mała Panew River in southern Poland. Earth Surface Processes and Landforms 31: 1227–1245, DOI 10.1002/esp.1331.
  • 42. Malik I, 2006b. Gully erosion dating by means of anatomical changes in exposed roots (Proboszczowicka Plateau, Southern Poland). Geochronometria 25: 57–66.
  • 43. Malik I, 2008. Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (southern Poland). Geomorphology 93: 421– 436, DOI 10.1016/j.geomorph.2007.03.007.
  • 44. Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements — an example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39: 180– 196, DOI 10.2478/s13386-012-0005-5.
  • 45. Maruszczak H, 1991. Zróżnicowanie stratygraficzne lessów polskich. (Stratigraphic differentiation of Polish loess). In: H. Maruszczak (Ed.), Podstawowe profile lessów w Polsce. Wyd. UMCS, Lublin: A.13-A.15. (in Polish).
  • 46. Maruszczak H, 2001. Schemat stratygrafii lessów i gleb śródlessowych w Polsce. (Scheme of loesses and intra-loess soils in Poland). In: H. Maruszczak (ed.), Podstawowe profile lessów w Polsce II. Wyd. UMCS, Lublin: 17–29. (in Polish).
  • 47. Mason JA, Jacobs PM and Greene RSB, 2003. Sedimentary aggregates in the Peoria Loess of Nebraska, USA. Catena 53: 377–397, DOI 10.1016/S0341-8162(03)00073-0.
  • 48. Moska P, Poręba G and Bluszcz A, 2004. The influence of cesium activity on the annual dose for OSL dating. Geochronometria 23: 15–19.
  • 49. Mroczek P, 2008. Interpretacja paleogeograficzna cech mikromorfologicznych neoplejstoceńskich sekwencji lessowo-glebowych (Palaeogeographic interperation of micromorphological features of Neopleistocene loess–palaeosol sequences). Maria Curie Skłodowska University Press, Lublin, 130 pp. (in Polish, with English summary).
  • 50. Mroczek P, 2013. Recycled loesses – a micromorphological approach to determination of local source areas of Weichselian loess. Quaternary International 296: 241–250, DOI 10.1016/j.quaint.2013.02.040.
  • 51. Mroczek P, 2018. Późnovistuliańsko-holoceńska ewolucja lessowych gleb płowych wyżyn południowopolskich w świetle badań mikromorfologicznych. (Late Vistulian-Holocene Evolution of Loess Luvisols from the South Polish Uplands Recorded in Micromorphology). Wydawnictwo UMCS, Lublin 109 (in Polish with English abstract).
  • 52. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 53. Paszyński J and Kluge M, 1986. Klimat Niecki Niedziańskiej. (Climate of the Nida Basin). Studia Ośrodka Dokumentacji Fizjograficzej 14: 211–238. (in Polish).
  • 54. Pietrzak-Flis Z, 2000. Skażenia promieniotwórcze środowiska i człowieka w Polsce. (Radioactive contamination of the environment and human in Poland). Postępy Fizyki 51: 70–72. (in Polish).
  • 55. Poręba G, Moska P and Bluszcz A, 2006. On the contribution of radioactive fallout isotopes to the total dose rate in dating of young sediments. Geochronometria 25: 47–50.
  • 56. Poręba G, 2006. Cesium-137 as a soil erosion tracer – a review. Geochronometria 25: 37–46.
  • 57. Poręba G and Bluszcz A, 2007. Determination of the initial 137Cs fallout on the areas contaminated by Chernobyl fallout. Geochronometria 26: 34–38, DOI 10.2478/v10003-007-0009-y.
  • 58. Poręba G and Bluszcz A, 2008. Influence of the parameters of models used to calculate soil erosion based on 137Cs tracer. Geochronometria 32: 21–27, DOI 10.2478/v10003-008-0026-5.
  • 59. Poręba G, Śnieszko Z and Moska P, 2015. Application of OSL dating and 137Cs measurements to reconstruct the history of water erosion: A case study of a Holocene colluvium in Świerklany, south Poland. Quaternary International 374: 187–197, DOI 10.1016/j.quaint.2015.04.004.
  • 60. Porto P, Walling DE, Callegari G and Catona F, 2006. Using fallout lead-210 measurements to estimate soil erosion in three small catchments in Southern Italy. Water, Air, and Soil Pollution 6: 293–303, DOI 10.1007/s11267-006-9050-5.
  • 61. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 62. Raven P, Evert R and Eichhorn S, 1999. Biology of Plants. W. H. Freeman and Company, New York, 944 pp.
  • 63. Ritchie J and McHenry JR, 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 19: 215–233, DOI 10.2134/jeq1990.00472425001900020006x.
  • 64. Sarmiento JL and Gwinn E, 1986. Strontium 90 fallout prediction. Journal of Geophysical Research C6: 7631–7646.
  • 65. Schweingruber FH, Kontic R, Niederer M, Nippel CA and WinklerSeifert A, 1985. Diagnosis and distribution of conifer decay in the Swiss Rhone Valley a dendrochronological study. In: H. Turner, W. Tranquillini (Eds.) Establishment and tending of subalpine forest (pp. 189–192). Berno: Swiss Federal Institute of Forestry Research.
  • 66. Schaetzl R, Forman S and Attig J, 2014. Optical ages on loess derived from outwash surfaces constrain the advance of the Laurentide Ice Sheet out of the Lake Superior Basin, USA. Quaternary Research 81: 318–329, DOI 10.1016/j.yqres.2013.12.003.
  • 67. Schmidt R and Heinrich J, 2011. 200 years of land-use change and gully erosion – a case study from Małopolska, SE Poland. Landform Analysis 17: 167–171.
  • 68. Stoffel M, Casteller A, Luckman BH and Villalba R, 2012. Spatiotemporal analysis of channel wall erosion in ephemeral torrents using tree roots — an example from the Patagonian Andes. Geology 40: 247–250, DOI 10.1130/G32751.1.
  • 69. Stach A, 1996. Możliwości i ograniczenia zastosowania cezu-137 do badań erozji gleb na obszarze Polski. (Possibilities and limitations of Cs-137 application for soil erosion research in Poland) In: Ochrona agroekosystemów zagrożonych erozją. Ogólnopolskie Sympozjum Naukowe, Puławy 1996: 203–226. (in Polish).
  • 70. Starkel L, 2005. Anthropogenic soil erosion Since the Neolith In Poland. Zeitschrift fur Geomorphologie 139: 189–201.
  • 71. Strzelecki R, Szewczyk J, Wołkowicz S and Jędrzejczak Z, 1992. Badania promieniotwórczości gamma na obszarze Polski: efekt Czarnobyla, skażenia przemysłowe, promieniotwórczość naturalna. (Gamma-radioactivity measurements in Poland: Chernobyl effect, industrial pollution, natural radioactivity). Przegląd Geologiczny 6: 365–371. (in Polish).
  • 72. Strzelecki R, Wołkowicz S and Lewandowski P, 1994. Koncentracje cezu w Polsce. (Concentration of Cesium in Poland). Przęgląd Geologiczny 1: 3–8 (in Polish).
  • 73. Sutherland RA, 1992. Caesium-137 estimates of erosion in agricultural areas. Hydrological Processes 6: 215–225, DOI 10.1002/hyp.3360060209.
  • 74. Szewczyk J, 1994. Wpływ skażeń czarnobylskich na poziom promieniowania gamma. (The effect of Chernobyl contamination on the level of gamma radiation) Przegląd Geologiczny 6: 450–454 (in Polish).
  • 75. Śnieszko Z, 1985. Paleogeografia holocenu w dolinie Sancygniówki. (Holocene paleogeography in the Sancygniówka valley) Acta Geogr. Lodz. 51 (ŁTN, Łódź.):7–119 (in Polish).
  • 76. Śnieszko Z, 1987. The late Vistulian and Holocene fluvial deposits of the middle Nidzica river in the area of Działoszyce. In: Starkel, L. (ed.), Evolution of the Vistula river valley during the last 15 000 years, part II. Geographical Studies, Special Issue, 4: 87–94.
  • 77. Śnieszko Z, 1991. Reflection of extreme events In evolution of dry valleys In loess Roztocze Upland. In: Less iosadydolinne. Ed J. Jersak. Sosnowiec: 119–129.
  • 78. Śnieszko Z, 1995. Ewolucja obszarów lessowych Wyżyn Polskich w czasie ostatnich 15 000 lat. (The loess cover evolution during last 15 000 years in Polish Upplands). Wyd. UŚ, Katowice, pp.122. (in Polish, with English summary).
  • 79. Vandekerckhove L, Muys B, Poesen J, De Weerdt B and Coppé N, 2001. A method for dendrochronological assessment of mediumterm gully erosion rates. Catena 45: 123–161, DOI 10.1016/S0341-8162(01)00142-4.
  • 80. Walling DE and Quine TA, 1990. Calibration of caesium137 measurements to provide quantitative erosion rate data. Land Degradation and Rehabilitation 2: 161–175.
  • 81. Walling DE, 1998. Use of 137Cs and other fallout radionuclides in soil erosion investigations: progress, problems and prospects. In: Use of 137Cs in the Study of Soil Erosion and Sedimentation. International Atomic Energy Agency Publication IAEA-TECDOC-1028, pp: 39–64.
  • 82. Walling DE and He Q, 1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28: 611–622, DOI 10.2134/jeq1999.00472425002800020027x.
  • 83. Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek, 2013. Application of eccentric growth of trees as a tool for landslide analyses (an example of Picea abies Karst. in the Carpathian and Sudeten Mountains – Central Europe). Catena 111: 41–55, DOI 10.1016/j.catena.2013.06.027.
  • 84. Zadorova T, Penizek V, Šefrna L, Drabek O, Mihaljevic M, Volf Š and Chuman T, 2013. Identification of Neolithic to Modern erosionsedimentation phases using geochemical approach in a loess covered sub-catchement of South Moravia, Czech Republic. Geoderma 195: 56–69, DOI 10.1016/j.geoderma.2012.11.012.
  • 85. Zhang XB, Higgitt DI and Walling DE, 1990. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrological Sciences 35: 243–252.
  • 86. Zhang XB, Walling DE and He Q, 1999. Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium137 measurements. Hydrological Sciences 44: 33–45, DOI 10.1080/02626669909492201.
  • 87. Zolitschka B, Behr K-B and Schneider J, 2003. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives – examples from the Bronze Age to the Migration Period, Germany. Quaternary Science Reviews 22: 81–100, DOI 10.1016/S0277-3791(02)00182-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1ea6f65-c440-44d8-a628-1bdd869dc1e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.