Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The titanium and its alloys belong at present to the most preferred and commonly applied biomaterials for load-bearing implants. The surfaces of biomaterials are subjected to modification, including the hydroxyapatite coatings deposited in order to ensure corrosion resistance and better joining between an implant and a bone through the possibility of ingrowth bone into the coating. In this paper, the morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb flat surfaces using electrophoretic method are presented. Electrophoretic deposition at two different current values and two electrolytes (first – ethanol with nanoHAp, second – methanol with nanoHAp) was applied. The scanning electron microscopy examinations and wettability angle measurements showed an increase in the coating thickness, the surface coverage and decrease in biocompatibility with increasing voltage. The surface condition and biocompatibility of coatings were better when using methanol/nanoHAp solution as compared to the ethanol/nanoHAp one.
Wydawca
Czasopismo
Rocznik
Strony
56--66
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Technology and Welding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Technology and Welding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Technology and Welding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
- 1. Mohan L., Durgalakshmi D., Gheeta M, Sankara Narayanan T.S.N, Asokamani R.: Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications, Ceramics International, 38 (2012), 3435-3443.
- 2. Cvijović-Alagić I., Cvijović Z., Mitrović Z., Panić V., Rakin M.: Wear and corrosion behaviour of Ti13Nb13Zr and Ti6Al4V alloys in simulated physiological solution, Corrosion Science 53 (2011), 796-808.
- 3. Zadrozhnyy V., Kaevitser E., Kopylov A., Borisowa Y., Sudarchikov V., Khesenova R., Gorshenkov M., Zadrozhnyy M., Koloshkin S.: Synthesis of hydroxyapatite coatings on the Ti substrates by mechanical alloying, Surface and Coatings Technology 281 (2015), 157-163.
- 4. Geetha M., Singh A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (2009), 397-425.
- 5. Pachauri P.: Techniques for dental implant nanosurface modifications, J.Adv Prosthodont 6 (2014), 498-504.
- 6. Chen Q., Thouas G.: Metallic implant biomaterials, Materials Science and Engineering R 87 (2015), 1-57.
- 7. Metikos-Hukovic M., Kwokal A.: The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials 24 (2003), 3765-3775.
- 8. Marciniak J: Biomaterials, The Publishing House of Technical University of Silesian, Gliwice 2013.
- 9. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti-Ta-Zr alloy by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.
- 10. Mishra A., Davidson J.: Mechanical and Tribological Properties and biocompatibility of diffusion hardened Ti13-Zr13-Nb a new titanium alloy for surgical implants, medical Applications of Titanium and Its Alloy: The Material and Biological Issues, American Society for Testing and materials (1996), 96 – 112.
- 11. Saji V., Choe H.: Electrochemical corrosion behavior of nanotubular Ti-13Nb–13Zr alloy in Ringer’s solution, Corrosion Science 51 (2009), 1658–1663.
- 12. Kollath O., Chen Q., Closset R., Luyten J., Taina K.: AC vs. DC electrophoretic deposition of hydroxyapatite on titanium, Journal of the European Ceramic Society 33 (2013), 2715-2721.
- 13. Farrokhi-Rad M., Shahrabi T.: Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceramics International 40 (2014), 3031-3039.
- 14. Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I.: Electrophoretic deposition of biomaterials, J. R. Soc. Interface 7 (2010), 581–613.
- 15. Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52 (2007), 1–61.
- 16. Zhitomirsky I., Gal-Or L.: Electrophoretic deposition of hydroxyapatite, Journal of Materials Science: Materials in Medicine 8 (1997), 213-219.
- 17. Kumara R., Kuntala K., Singha S., Guptaa P., Bhushanc B., Gopinathc P., Lahiri D.: Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application, Surface and Coatings Technology 287 (2016), 82-92.
- 18. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.
- 19. Say Y., Aksakal B., Dikici B: Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy, Ceramics International 8 (42) (2016), 10151-10158.
- 20. Hea D., Liua P., Liua X., Maa F., Chena X., Lia W., Dub J., Wang P., Zhao J.: Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V, Journal of Alloys and Compounds 675 (2016), 336-343.
- 21. Vasilescu C., Popa M., Drob S., Osiceanu P., Anastasescu M., Moreno J.: Deposition and characterization of bioactive ceramic hydroxyapatite coating on surface of Ti–15Zr–5Nb alloy, Ceramics International 9 part B (40) (2014), 14973-14982.
- 22. Palanivelu R., Kalainathan S., Kumar A.: Characterization studies on plasma sprayed (AT/HA) bi-layered nanoceramics coating on biomedical commercially pure titanium dental implant, Ceram. Int. 40 (2014), 7745–7751.
- 23. Jeong Y., Choe H., Brantley W.: Electrochemical and surface behavior of hydroxyapatite/Ti film on nanotubular Ti-35Nb-xZralloys, Appl. Surf.Sci. 258 (2012), 2129–2136.
- 24. Wang C., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study, Biomaterials 24 (2003), 3069–3077.
- 25. Yamaguchi S., Takadama H., Matsushita T., Nakamura T., Kokubo T.: Apatite-formingability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment, J.Mater. Sci.: Mater. Med. 21 (2010) 439–444.
- 26. Vasilescu C., Drob P., Vasilescu E., Demetrescu I., Ionita D., Prodana M., Drob S.: Characterization and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films onTi-6Al-4V-1Zr alloy surface, Corros.Sci. 53 (2011), 992–999.
- 27. Duarte L., Biaggio S., Rocha-Filho R., Bocchi N.: Preparation and characterization of biomimetically and electrochemically deposited hydroxyapatite coatings on micro-arc oxidized Ti-13Nb-13Zr, J.Mater. Sci.: Mater.Med. 22 (2011), 1663–1670.
- 28. Bigi A., Fini M. Bracci B., Boanini E., Torricelli P., Giavaresi G., Aldini N., Facchini A., Sbaiz F., Giardino R.: The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model, Biomaterials 29 (2008), 1730–1736.
- 29. Jemat A., Ghazali M.: Surface Modifications and Their Effects on Titanium Dental Implants, BioMed Research International (2015).
- 30. Jurczyk M., Jakubowicz J.: Biomaterials, The Publishing House of Technical University of Poznan, Poznan 2008.
- 31. Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia 7 (2011), 2769–2781.
- 32. Rojaee R., Fathi M., Raeissi K.: Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments, Applied Surface Science 285 P (2013), 664–673.
- 33. Rath P., Besra L.: Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceramics International 38 (4) (2012), 3209–3216
- 34. Zhenyn Z., Jinli Q.: Electrophoretic deposition of biomimetic zinc substituted hydroxyapatite coatings with chitosan and carbon nanotubes on titanium, Ceramics International 41 (7) (2015), 8878–8884.
- 35. Stoch A., Brożek A.: Electrophoretic coating of hydroxyapatite on titanium implants, Journal of Molecular Structure 596 (1-3) (2001), 191–200.
- 36. Xiao X., Liu R.: Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings, Materials Letters 60 (11-12) (2006), 2627–2632.
- 37. Kwok C.K., Wong P.K., Cheng F.T.: Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 225 (13-14) (2009), 6736–6744.
- 38. Nakamura M., Hori N., Ando H.: Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Material Science and Engineering C 62 (2016), 283-292.
- 39. Khandan A., Abdellahi M., Ozada N.: Study of the bioactivity, wettability and hardness behavior of the bovine hydroxyapatite-diopside bio-nanocoposite coating, Journal of the Taiwan Institute of Chemical Engineers 60 (2016), 538-546.
- 40. Eliaz N., Shmueli S., Shur I.: The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia 5 (2010), 3178-3191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1e9ba7b-a4fd-40ca-8dad-45dd664eac0b