Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper describes a novel online identification algorithm for a two-mass drive system. The multi-layer extended Kalman Filter (MKF) is proposed in the paper. The proposed estimator has two layers. In the first one, three single extended Kalman filters (EKF) are placed. In the second layer, based on the incoming signals from the first layer, the final states and parameters of the two-mass system are calculated. In the considered drive system, the stiffness coefficient of the elastic shaft and the time constant of the load machine is estimated. To improve the quality of estimated states, an additional system based on II types of fuzzy sets is proposed. The application of fuzzy MKF allows for a shorter identification time, as well as improves the accuracy of estimated parameters. The identified parameters of the two-mass system are used to calculate the coefficients of the implemented control structure. Theoretical considerations are supported by simulations and experimental tests.
Rocznik
Tom
Strony
art. no. e146107
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Institute of Electrical Machines, Drives and Measurements, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Institute of Electrical Machines, Drives and Measurements, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Institute of Electrical Machines, Drives and Measurements, Wrocław, Poland
autor
- Keio University, Department of System Design Engineering, Tokyo, Japan
Bibliografia
- [1] S. Brock, D. Łuczak, K. Nowopolski, T. Pajchrowski, and K. Zawirski, “Two Approaches to Speed Control for Multi-Mass System with Variable Mechanical Parameters,” IEEE Trans. Ind. Electron., vol. 64, pp. 3338–3347, 2016.
- [2] P. Serkies, “Estimation of state variables of the drive system with elastic joint using moving horizon estimation (MHE),” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 883–892, 2019.
- [3] M. Iwasaki, K. Seki, and Y. Maeda, “High-Precision Motion Control Techniques: A Promising Approach to Improving Motion Performance,” IEEE Ind. Electron. Mag., vol. 6, no. 1, pp. 32–40, Mar. 2012, doi: 10.1109/MIE.2012.2182859.
- [4] M. Ruderman, M. Iwasaki, and W. Chen, “Motion-control techniques of today and tomorrow: a review and discussion of the challenges of controlled motion,” IEEE Ind. Electron. Mag., vol. 14, no. 1, pp. 41–55, Mar. 2020, doi: 10.1109/MIE.2019.2956683.
- [5] J. Kabziński and P. Mosiołek, “Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness,” Energies, vol. 14, p. 5475, 2021.
- [6] R. Szczepanski, M. Kaminski, and T. Tarczewski, “Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System,” Energies, vol. 13, p. 3067 2020.
- [7] S.E. Saarakkala and M. Hinkkanen, “Identification of Two-Mass Mechanical Systems Using Torque Excitation: Design and Experimental Evaluation,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 4180–4189, Sep./Oct. 2015, doi: 10.1109/TIA.2015.2416128.
- [8] M. Östring, S. Gunnarsson, and M. Norrlöf, “Closed-loop identification of an industrial robot containing flexibilities,” Control Eng. Pract., vol. 11, no. 3, pp. 291–300, Mar. 2003.
- [9] S.-M. Yang and S.-C. Wang, “The detection of resonance frequency in motion control systems,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3423–3427, Sep./Oct. 2014.
- [10] Y. Yoshioka and T. Hanamoto, “Estimation of a multimass system using the LWTLS and a coefficient diagram for vibration-controller design,” IEEE Trans. Ind. Appl., vol. 44, no. 2, pp. 566–574, Mar./Apr. 2008.
- [11] S. Villwock and M. Pacas, “Application of the Welch-method for the identification of two- and three-mass-systems,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 457–466, Jan. 2008.
- [12] D. Łuczak, “Nonlinear Identification with Constraints in Frequency Domain of Electric Direct Drive with Multi-Resonant Mechanical Part,” Energies vol. 14, no. 21, p. 7190, 2021, doi: 10.3390/en14217190.
- [13] J.-H. Montonen, N. Nevaranta, T. Lindh, J. Alho, P. Immonen, and O. Pyrhonen, “Experimental Identification and Parameter Estimation of the Mechanical Driveline of a Hybrid Bus,” IEEE Trans. Ind. Electron., vol. 65, pp. 5921–5930, 2018.
- [14] N. Nevaranta, J. Parkkinen, T. Lindh, M. Niemelä, O. Pyrhönen, and J. Pyrhönen, “Online Estimation of Linear Tooth Belt Drive System Parameters,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7214–7223, Nov. 2015, doi: 10.1109/TIE.2015.2432103.
- [15] K. Szabat and T. Orlowska-Kowalska, “Application of the Kalman filters to the high-performance drive system with elastic coupling,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4226–4235, Nov. 2012.
- [16] M. Perdomo, M. Pacas, T. Eutebach, and J. Immel, “Sensitivity analysis of the identification of variable inertia with an extended kalman filter,” Proc. IEEE IECON, Nov. 2013, pp. 3102–3107.
- [17] K. Szabat and T. Orlowska-Kowalska, “Vibration Suppression in Two-Mass Drive System using PI Speed Controller and Additional Feedbacks – Comparative Study,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1193–1206, Apr. 2007, doi: 10.1109/TIE.2007.892608.
- [18] S. Katsura and K. Ohnishi, “Force Servoing by Flexible Manipulator Based on Resonance Ratio Control,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 539–547, Feb. 2007.
- [19] H. Kobayashi, S. Katsura, and K. Ohnishi, “An Analysis of Parameter Variations of Disturbance Observer for Motion Control,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3413–3421, Dec. 2007.
- [20] S. Katsura, J. Suzuki, and K. Ohnishi, “Pushing Operation by Flexible Manipulator Taking Environmental Information Into Account,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1688–1697, Oct. 2006.
- [21] J. Kabziński and P. Mosiołek, “Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 963–971, 2020.
- [22] M. Zychlewicz, R. Stanislawski, and M. Kaminski, “Grey Wolf Optimizer in Design Process of the Recurrent Wavelet Neural Controller Applied for Two-Mass System,” Electronics, vol. 11, p. 177, 2022, doi: 10.3390/electronics11020177.
- [23] K. Szabat and T. Orlowska-Kowalska, “Performance Improvement of Industrial Drives With Mechanical Elasticity Using Nonlinear Adaptive Kalman Filter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1075–1084, March 2008.
- [24] M. Cychowski, K. Szabat, and T. Orlowska-Kowalska, “Constrained Model Predictive Control of the Drive System With Mechanical Elasticity,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1963–1973, June 2009, doi: 10.1109/TIE.2009.2015753.
- [25] C. Wang, M. Yang, W. Zheng, J. Long, and D. Xu, “Vibration Suppression With Shaft Torque Limitation Using Explicit MPC-PI Switching Control in Elastic Drive Systems,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6855–6867, Nov. 2015.
- [26] M. Yang, C. Wang, D. Xu, W. Zheng, and X. Lang, “Shaft Torque Limiting Control Using Shaft Torque Compensator for Two-Inertia Elastic System With Backlash,” IEEE/ASME Trans. Mechatron., vol. 21, no. 6, pp. 2902–2911, Dec. 2016.
- [27] P. Serkies and A. Gorla, “Implementation of PI and MPC-Based Speed Controllers for a Drive with Elastic Coupling on a PLC Controller,” Electronics, vol. 10, p. 3139, 2021, doi: 10.3390/electronics10243139.
- [28] B. Firouzi et al., “A Type-2 Fuzzy Controller for Floating Tension-Leg Platforms in Wind Turbines,” Energies, vol. 15, p. 1705, 2022, doi: 10.3390/en15051705.
- [29] P. Derugo, K. Szabat, T. Pajchrowski, and K. Zawirski, “Fuzzy Adaptive Type II Controller for Two-Mass System,” Energies, vol. 15, p. 419, 2022, doi: 10.3390/en15020419.
- [30] K. Śleszycki, K. Wróbel, K. Szabat, and S. Katsura, “Parameter Identification of the Two-Mass System with the help of Multi-layer Estimator,” 2021 IEEE Int. Symp. Ind. Electron., (ISIE), 2021, pp. 1–6, doi: 10.1109/ISIE45552.2021.9576313.
- [31] K. Szabat, K. Wróbel, and S. Katsura, “Application of Multilayer Kalman Filter to a Flexible Drive System,” IEEJ J. Ind. Appl., vol. 11, no. 3, pp. 483–493, 2022, doi: 10.1541/ieejjia.21009655.
- [32] J. Bernat, J. Kolota, P. Superczynska, and S. Stepien, “Multi-layer observer as new structure for state estimation in linear systems,” Arch. Electr. Eng., vol. 66, no. 3, pp. 507–521, 2017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1e2c0fe-d2cd-44f6-8c53-74d471e7f098