PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the Influence of the Liner Shape and Charge Detonation Scheme on the Kinetic Characteristics of Shaped Charge Jets and Explosively Formed Penetrators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of modelling the functioning of shaped charges with different liners and different detonation excitation schemes are presented. The simulation results are compared with experimental data and modelling results by other authors. The shaped charge explosion process was simulated with the help of the authors’ program “Hephaestus” and the ANSYS/AUTODYN program. The results of determining the depth of penetration of cumulative jets into a barrier using the AV model (Allison and Vitali) are compared with experimental data. The dependence of the velocity of the leading part of the copper cumulative jet on the angle at the top of the conical liner is proposed. Attention was paid to the need to take into account the gradient of the properties of the liner material in the simulations.
Rocznik
Strony
417--441
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Institute of Hydromechanics, National Academy of Sciences of Ukraine, 03057 Kyiv, Ukraine
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
  • Shostka Institute of Sumy State University, 41100 Shostka, Ukraine
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine
autor
  • Institute of Hydromechanics, National Academy of Sciences of Ukraine, 03057 Kyiv, Ukraine
Bibliografia
  • [1] Babkin, A.V.; Kolpakov, V.I.; Ladov, S.V.; Orlenko, L.P. The Shaped Charge Effect (in Russian) In: The Physics of Explosion. Vol. 2, 2004, рp. 389-524.
  • [2] Ou, J.-H.; Ou, J.-B.; Jhu, Y.-J. The Design and Analysis for Shaped Charge Liner Using Taguchi Method. Int. J. Mech. 2014, 8: 53-61.
  • [3] Pyka, D.; Kurzawa, A.; Bocian, M.; Bajkowski, M.; Magier, M.; Sliwinski, J.; Jamroziak, K. Numerical and Experimental Studies of the ŁK Type Shaped Charge. Appl. Sci. 2020, 10: paper 6742; http://dx.doi.org/10.3390/app10196742.
  • [4] Zhang, X.-f.; Qiao, L. Studies on Jet Formation and Penetration for a Double-layer Shaped Charge. Combust. Explosion Shock Waves 2011, 47: 241-248; https://doi.org/10.1134/S0010508211020134.
  • [5] Tymoshenko, A.B.; Chepkov, I.B. Modeling of the Functioning of Warhead Containing Projectile-forming Elements. Military and Technical Collection 2011, 2(5): 73-81.
  • [6] Habera, Ł.; Hebda, K.; Koślik, P.; Sałacińskі, Т. The Shooting Tests of Target Perforating Ability, Performed on Cast Concrete Cylinders. Cent. Eur. J. Energ. Mater. 2020, 17(4): 584-599; https://doi.org/10.22211/cejem/132066.
  • [7] Elshenawy, T.; Li, Q.-m.; Elbeih, A. Experimental and Numerical Investigation of Zirconium Jet Performance with Different Liner Shapes Design. Def. Technol. 2022, 18(1): 12-25; https://doi.org/10.1016/j.dt.2020.11.019.
  • [8] Kemmoukhe, H.; Savić, S.; Terzić, S.; Lisov, M.; Rezgui, N.; Sedra, H. Improvement of the Shaped Charge Jet Penetration Capability by Modifying the Liner Form Using AUTODYN-2D. Sci.-Tech. Rev. 2019, 69(1): 10-15; https://doi.org/10.5937/str1901010K.
  • [9] Fedorov, S.V. Numerical Simulation of the Formation of Shaped-charge Jets from Hemispherical Liners of Degressive Thickness. Combust. Explosion Shock Waves 2016, 52: 600-612; https://doi.org/10.1134/S0010508216050117.
  • [10] Du, Y.; He, G.; Liu, Y.; Guo, Z.; Qiao, Z. Study on Penetration Performance of Rear Shaped Charge Warhead. Materials 2021, 14: paper 6526; https://doi.org/10.3390/ma14216526.
  • [11] Minin, V.F.; Minin, I.V.; Minin, O.V. Physics Hypercumulation and Combined Shaped Charges. Proc. 11th Int. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE) – 30057, Vol. 1, NSTU, Novosibirsk, 2012, pp. 34-52; http://doi.org/10.1109/APEIE.2012.6628935.
  • [12] Cui, P.; Shi, D.; Xu, J.; Wang, T.; Zhang, Z.; Li, Z.; Wang, D. Numerical Simulation on Jet Forming and Penetration Performance of Several Amorphous Energetic Alloy Liner with Typical Structures. J. Phys.: Conf. Ser. 1948, 2021, 012186 IOP Publishing, http://doi.org/10.1088/1742-6596/1948/1/012186.
  • [13] Elshenawy, T.; Elbeih, A.; Li, Q.M. Influence of Target Strength on the Penetration Depth of Shaped Charge Jets into RHA Targets. Int. J. Mech. Sci. 2018, 136: 234-242; https://doi.org/10.1016/j.ijmecsci.2017.12.041.
  • [14] Markelov, G.E. Effect of Initial Heating of Shaped Charge Liners on Shaped Charge Penetration. J. Appl. Mech. Tech. Phys. 2000, 5: 788-791; https://doi.org/10.1007/BF02468723.
  • [15] Li, W.; Wang, X.; Li, W. The Effect of Annular Multi-point Initiation on the Formation and Penetration of an Explosively Formed Penetrator. Int. J. Impact Engineering 2010, 37: 414-424; https://doi.org/10.1016/j.ijimpeng.2009.08.008.
  • [16] Walters, W. Introduction to Shaped Charges. Aberdeen Proving Ground, MD 21005-5069, Army Research Laboratory. ARL-SR-150, 2007, p. 110.
  • [17] Resnyansky, A.D.; Katselis, G.; Wildegger-Gaissmaier, A.E. Experimental and Numerical Study of the Shaped Charge Jet Perforation against Concrete Target. CD-ROM Proc. 21st Int. Symp. Ballistics, additional entries, 2004.
  • [18] Drachuk, A.G.; Goshovskii, S.V.; Voitenko, Y.I. The Calculation Parameters of Shaped Charges with Porous Liners. (in Ukrainian) Ukrainian State Geological Exploration Institute, Kiev, 2007, p. 42
  • [19] Wua, J.; Liu, J.; Du, Y. Experimental and Numerical Study on the Flight and Penetration Properties of Explosively-formed Projectile. Int. J. Impact Engineering 2007, 34(7): 1147-1162; https://doi.org/10.1016/j.ijimpeng.2006.06.007.
  • [20] Kolpakov, V.I.; Savenkov, G.G.; Rudometkin, K.A.; Grigor’ev, A.Yu. Numerical Simulation of the Formation of Compact Strikers from Low-Sphericity Linings. Tech. Phys. 2016, 61(8): 1141-1145; https://doi.org/10.1134/S1063784216080156.
  • [21] Held, M. Liners for Shaped Charges. J. Battlefield Technol. 2001, 4(3): 1-6.
  • [22] Pham, J.D.; Baker, E.L.; De Fisher, S. Shaped Charge Jet Flash Radiography Digitization. Technical Report ARAET-TR-05013, US Army Armament Research, Development and Engineering Center, Picatinny, New Jersey, 2005, р. 39.
  • [23] Simon, J.; Dipersio, R.; Merendino, A.B. Penetration of Shaped-Charge Jets into Metallic Targets; Ballistic Research Laboratory Memorandum. Report No. 1296; Ballistic Research Laboratory, Aberdeen, US-MD, 1965.
  • [24] Petit, J.; Jeanclaude, V.; Fressengeas, C. Break-up of Copper Shaped-charge Jets: Experiment, Numerical Simulations, and Analytical Modelling. J. Appl. Phys. 2005, 98: paper 123521; http://dx.doi.org/10.1063/1.2141647.
  • [25] Salkičević, M. Numerical Simulations of the Formation Behavior of Explosively Formed Projectiles. Defense Security Studies 2022, 3: 1-14; https://doi.org/10.37868/dss.v3.id183.
  • [26] Voitenko, Y.I.; Goshovskii, S.V.; Drachuk, A.G.; Bugaets, V.P. Mechanical Effect of Shaped Charges with Porous Liners. Combust. Explos. Shock Waves 2013, 49(1): 109-116; https://doi.org/10.1134/S0010508213010127.
  • [27] Murphy, M.J. Shaped-Charge Penetration in Concrete: A Unified Approach. Doctor Dissertation, University of California, Livermore, California, 1983, p. 114.
  • [28] Orlenko, L.P.; Selivanov, V.V. An Explosion in Solids. (in Russian) In: The Physics of Explosion. Vol. 2, 2004, рp. 389-524.
  • [29] Calculation of Gas-dynamic Flows Based on the Concentration Method. (in Russian) (Bakhrach, S.M.; Gogoleva, Yu.P.; Samygulin, M.S.; Eds.) Dokl. Academy of Sciences of the USSR 1981, 257(3): 566-569.
  • [30] Numerical Methods in Problems of Physics of Explosion and Impact. (in Russian) (Babkin, A.V.; Kolpakov, V.I.; Okhityn, V.N.; Eds.) textbook for students, Vol. 3, Moscow State Technical University, Russia, 2000, p. 516.
  • [31] Odintsov, V.A.; Sydorenko, Yu.M.; Tuberozov, V.S. Modeling of the Explosion Process of a High-explosive Projectile Using a Two-dimensional Hydrocode. Def. Technol. 2000, 1-2: 49-55.
  • [32] Sydorenko, Yu.M. Methodology of Two-dimensional Computer Modeling of the Processes of Functioning of High-explosive Munitions. Artillery and Gunnery 2005, 1: 18-21.
  • [33] Sidorenko, Yu.M.; Shlenskii, P.S. On the Assessment of Stress-strain State of the Load-Bearing Structural Elements in the Tubular Explosion Chamber. Strength Mater. 2013, 45(2): 210-220.
  • [34] Sydorenko, Yu.; Semon, B.; Yakovenko, V.; Ryzhov, Y.; Ivanyk, E. Spatial Distribution of Mass and Speed on Movement of Two Shrapnel Discs of Variable Thickness in Explosive Load. Def. Sci. J. 2020, 70: 479-485; https://doi.org/10.14429/dsj.70.14524.
  • [35] Kravets, V.; Zakusylo, R.; Sydorenko, Y.; Sałaciński, T.; Zakusylo, D. Regularities of the Energy of Formation Field in the Explosion of a Conical Charge. Cent. Eur. J. Energ. Mater. 2019, 16(4): 533-546; https://doi.org/10.22211/cejem/115355.
  • [36] Webpage: www.ansys.com.
  • [37] Johnson, G.R.; Cook, W.H. Fracture Characteristics of Three Metals Subject to Various Strains, Strain Rates, Temperatures and Pressures. Eng. Frac. Mech. 1985, 21(1): 31-48.
  • [38] LLNL Explosive Handbook. Properties of Chemical Explosives and Explosive Simulants. (Dobratz., B.M.; Crawford, P.C.; Eds.) Livermore, California, 1985, p. 541.
  • [39] Mathematical Modeling of Shock and Explosion Processes in the LS-DYNA Program. (Muizemnek, A.Yu.; Bogach, A.A.), textbook, Information and Publishing Center of Penza State University, Penza, Russia, 2005, p. 106.
  • [40] Kruglov, P.V.; Kolpakov, V.I. Laws of Explosive Formation of Elongated Highspeed Elements from Steel Segmental Liners. Engineering Magazine: Science and Innovations 2017, 12. http://dx.doi.org/10.18698/2308-6033-2017-12-1714.
  • [41] Żochowski, P.; Warchoł, R. Experimental and Numerical Study on the Influence of Shaped Charge Liner Cavity Filling on Jet Penetration Characteristics in Steel Targets. Def. Technol. 2023, 23: 60-74, https://doi.org/10.1016/j.dt.2022.09.007.
  • [42] Żochowski, P.; Warchoł, R.; Miszczak, M.; Nita, M.; Pankowski, Z.; Bajkowski, M. Experimental and Numerical Study on the PG-7VM Warhead Performance against High-Hardness Armor Steel. Materials 2021, 14: paper 3020; https://doi.org/10.3390/ma14113020.
  • [43] Voitenko, Y.I.; Bugajets, V.P. Influence of Aluminum on the Impact Properties of Composite Cumulative Jets. (in Russian) Bull. National Technical University of Ukraine «Kiev Polytechnic Institute» 2016, 30: 36-48.
  • [44] Voitenko, Y.I.; Zakusylo, R.V.; Wojewodka, A.T.; Gontar, P.A.; Gerlich, M.M.; Drachuk, O.G. New Functional Materials in Mechanical Engineering and Geology. Cent. Eur. J. Energ. Mater. 2019, 16(1): 135-149; https://doi.org/10.22211/cejem/105598.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1de2b4e-2668-4dbe-bcb0-85dbe5936a58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.