PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of atmosphere delays in processing of aircraft’s coordinates determination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the study's results of aircraft’s coordinates and their accuracy are presented. The airborne test was conducted in military airport in Deblin on 1st of June 2010. The aircraft position was determinate using SPP method in RTKPOST library in RTKLIB software. To calculate the aircraft’s coordinates two strategies were used, first include correction of atmosphere delays (I solution) and another without this correction (II solution). Based on these calculations, the average accuracy of aircraft position is less than 5 m for solution I and less than 8 m for solution II, respectively. The mathematical model for recovery of aircraft position; the configuration of parameters in SPP method for solution; the standard deviation values of X, Y and Z coordinates; the values of RMS-3D parameter are presented in the article. In this article, the impact of ionosphere and troposphere delay in processing of recovery of aircraft position is presented. The aircraft’s coordinates were obtained using SPP (Single Point Positioning) method for two solutions, e.g. including atmosphere corrections (I solution) and excluding (II solution). The article is divided into 5 sections: introduction, mathematical model for recovery of aircraft position, research experiment, results and discussion, conclusions.
Słowa kluczowe
Twórcy
autor
  • District Office in Ryki Faculty of Geodesy, Cartography and Cadastre Wyczolkowskiego Street 10A, 08-500 Ryki, Poland
  • Military University of Technology in Warsaw, Faculty of Civil Engineering and Geodesy Department of Remote Sensing and Photogrammetry Kaliskiego Street 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Bessler, W. G., Schulz, C., Lee, T., Jeffries, J. B., Hanson, R. K., Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A-X (0,1) excitation, Proceedings of the Western States Section of the Combustion Institute, Spring Meeting, pp. 145-156, Oakland 2001.
  • [2] Buckmaster, J., Clavin, P., Linan, A., Matalon, M., Peters, N., Sivashinsky, G., Williams, F. A., Combustion theory and modeling, Proceedings of the Combustion Institute, Vol. 30, pp. 1-19, Pittsburgh 2005.
  • [3] Corcione, F. E., et al., Temporal and spatial evolution of radical species in the experimental and numerical characterization of diesel auto-ignition, Proceedings of The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001), pp. 355-363, Nagoya 2001.
  • [4] Bosy, J., Precyzyjne opracowanie satelitarnych obserwacji GPS w lokalnych sieciach położonych w ternach górskich, Wydawnictwo Akademii Rolniczej we Wrocławiu, Nr 522, str. 68-72, 2005.
  • [5] Camargo, P. O., Monico, J. F. G., Ferreira, L. D. D., Application of ionospheric corrections in the equatorial region for L1 GPS users, Earth Planets Space, Vol. 52, pp. 1083-1089, 2000.
  • [6] Ćwiklak, J., Ciećko, A., Grzegorzewski, M., Jafernik, H., Oszczak, S., Monitorowanie ruchu statków powietrznych o pojazdów służb porządku publicznego z wykorzystaniem GNSS – cz. II, Logistyka, Nr 6, s. 601-610, 2011.
  • [7] Jafernik, H., Krasuski, K., Zastosowanie metody PPP do wyznaczenia trajektorii statku powietrznego, Technika Transportu Szynowego, Nr 12, str. 681-686, 2015.
  • [8] Kedzierski, M., Wierzbicki D., Radiometric quality assessment of images acquired by UAV’s in various lighting and weather conditions, Measurement, Vol. 76, pp. 156-169, 2015.
  • [9] Klobuchar, J. A., Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-23, No. 3, pp. 325-331, 1987.
  • [10] Krasuski, K., Utilization GPS/QZSS data for determination of user’s position, Pomiary Automatyka Robotyka, R. 19, Nr 2, str. 71-75, DOI: 10.14313/PAR_216/75, 2015.
  • [11] Kroszczyński, K., Mezoskalowe funkcje odwzorowujące opóźnienia troposferycznego sygnałów GNSS, Redakcja Wydawnictw WAT, ISBN 978-83-62954-99-5, str. 117-139, 2013.
  • [12] Øvstedal, O., Absolute positioning with single-frequency GPS receivers, GPS Solutions, Vol. 5, No. 4, pp. 33-44, 2002.
  • [13] Sanz Subirana, J., Juan Zornoza, J. M., Hernández-Pajares, M., GNSS Data Processing, Vol. I: Fundamentals and Algorithms, Publisher: ESA Communications, ESTEC, Noordwijk, Netherlands, pp. 95-138, 2013.
  • [14] Schaer S., Mapping and predicting the Earth’s ionosphere using Global Positioning System, PhD thesis, Neunundfünfzigster Band, Vol. 59, pp. 50-52, Zürich, Switzerland 1999.
  • [15] Takasu, T., RTKLIB ver. 2.4.2 Manual, RTKLIB: An Open Source Program Package for GNSS Positioning, pp. 129-160. Available at: http://www.rtklib.com/prog/manual_2.4.2.pdf., 2013.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1dd1020-8fc7-488f-b38e-2d5e7c86bab3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.