Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Based on the study of literature relating to the classification of forests using high resolution space images established that the main problem of classification is the separateness classes and close to the spectral brightness classes can not be identified with high accuracy. Classification using maximum likelihood algorithm, which generally gives better results compared with algorithms of spectral distance or Mahalanobis distance, does not lead to the definition of areas with a high probability. Therefore, the article examines approach of classification of forests using post-processing. Experimental studies were carried using an satellite image of the forested area of Precarpathian region obtained from QuickBird-2 (June 2010). Data collected during field research were used as Verification data to determine areas of different objects. The controlled classification has been performed using the method of the maximum likelihood, size of signatures for 8 classes were selected from 100 to 400 points. For these classes was calculated matrix of separation of classes, and was found a significant correlation between next classes: young conifer plantings and pine and mixed forest, and deciduous young plantings and deciduous forest. Post-processing significantly improves the reliability of determination of area, which consists in the assign to all pixel of the selected neighbourhood brightness of most points, although there is a dependency of reliability of determination of area from the size of the area. Accuracy of determination of areas are from 92 to 99%.
Czasopismo
Rocznik
Tom
Strony
7--19
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Lviv Polytechnic National University Department of Photogrammetry and Geoinphormatics 79013 Lviv, s.Bandery str. 12
autor
- Lviv Polytechnic National University Department of Photogrammetry and Geoinphormatics 79013 Lviv, s.Bandery str. 12
autor
- Lviv Polytechnic National University Department of Photogrammetry and Geoinphormatics 79013 Lviv, s.Bandery str. 12
Bibliografia
- Burshtynska K., Madyar J., Polishchuk B. 2015. Deforestation monitoring at different periods by satellite imagery. ISPRS WG IV/2 Workshop, Novosibirsk, 114–127.
- Burshtynska K., Polishchuk B., Madyar J. 2014. The definition of the area of felling forests by high resolution satellite images. Geomat. Landmanag. Landsc. (GLL), 3, 43–54.
- Ekologia, https://ecology.unian.ua.
- Foody G.M. 2008. Harshness in image classification accuracy assessment. Int.J. Remote Sens., 29(11), 3137–3158.
- Gloabal Forest Watch, https://www.globalforestwatch.org
- Lu D., Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28(5), 823–870.
- Lyalko V.I. 2006. Bagatospektralni metody dystancijnogo zonduvannya Zemli v zadachah pryrodokorystuvannya, V.I. Lyalko, M.O. Popova (eds). Nauk. dumka, 306.
- Myklush S.I., Gavryljuk S.A., Chaskovskiy O.G. 2012. Dystancijne zonduvannja Zemli v lisovomu gospodarstvi: navch. posib. Lviv, ZUKC, 324.
- Peng G., Jie W., Le Y., Yongchao Z., Yuanyuan Z., Lu L., Zhenguo N., Xiaomeng H., Haohuan F., Shuang L., Congcong L., Xueyan L., Wei F., Caixia L., Yue X., Xiaoyi W., Qu Ch., Luanyun H., Wenbo Y., Han Z., Peng Z., Ziying Z., Haiying Z., Yaomin Z., Luyan J., Yawen Z., Han Ch., An Y., Jianhong G., Liang Y., Lei W., Xiaojun .L., Tingting S., Menghua Z., Yanlei Ch., Guangwen Y., Ping T., Bing X., Chandra G., Nicholas C., Zhiliang Z., Jin Ch., Jun Ch. 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens., 34(7), 2607–2654.
- Sakhatsky A.I., McCallun J., Khodorovsky A.Ja., Bujanova I.Ja. 2002. Classification of space image for forest state identification within the Siberia region. Pt. 1 IIASA, Laxenburg, Austria, IR-02-09, April, 45.
- Sesin V.A. 2003. Geoinformacijnyj pidhid do kartografuvannja lisovogo gospodarstva. Visnyk geodezii i kartografii, 3, 27–32.
- Slobodjanyk M. 2014. Vykorystannya metodiv DZZ ta GIS-technologij dlya monitoryngu lisovyh resursiv. Visnyk geodezii i kartografii, 1(88), 27–31.
- Swain P.H., Davis S.M. (eds). 1978. Remotesensing – the quantitative approach. McGraw-Hill, New York.
- Viewegh J., Kusbach A., Mikeska M. 2008. Czech forest ecosystem classification. J. Forest Sci., 49, 74–82.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1d7e34e-7d63-4b50-9db0-e2857cc03771