PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating ammonium-based polymer with phytoremediation for phosphate and chemical oxygen demand reduction in palm oil mill effluent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution caused by the palm oil industry is a severe problem. In palm oil production, liquid waste is obtained as palm oil mill effluent containing COD and phosphate, which can pollute aquatic ecosystems and soil. Phytoremediation technology with modification using ammonium-based polymer adsorbents effectively reduces palm oil mill effluent contaminants. This study aimed to test the effectiveness of phytoremediation and adsorption modification technology using ammonium-based polymer adsorbents to consider environmentally friendly and economical reducing pollutants in palm oil mill effluent. Vetiveria zizanioides plants were cultivated in floating treatment wetlands, and the planting media was varied using ammonium-based polymer to treat palm oil mill effluent with a volume of 3 L. The performance of the modified reactor in degrading COD and phosphate was examined by monitoring the floating treatment wetlands for 9 days and measuring the physiochemical parameters. Variations in ammonium-based polymer showed optimal performance using a lower ratio of 0.3. This combination of technologies removed COD by around 77.3% with an adsorption capacity of 558.4 mg/g and phosphate by around 59.5% with an adsorption capacity of 2.77 mg/g within nine days. These results could be elaborated on with tertiary treatment for future treatment to enhance removal according to the quality standards of the Ministry of Environment and Forestry in Indonesia.
Rocznik
Strony
46--58
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
autor
  • Research Center for Chemistry, National Research and Innovation Agency B.J. Habibie Science and Techno Park, Serpong, South Tangerang, Banten, 15314, Indonesia
  • Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia. Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia
Bibliografia
  • 1. Abdurahman, N.H., Rosli, Y.M., Azhari, N.H. (2011). Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination, 266(1–3), 208–212. https://doi.org/10.1016/j.desal.2010.08.028
  • 2. Abnisa, F., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N., Noor, I.M. (2013). Utilization of oil palm tree residues to produce bio-oil and bio-charvia pyrolysis. Energy Conversion and Management, 76, 1073–1082. https://doi.org/10.1016/j.enconman.2013.08.038
  • 3. Aini, N., Mufandi, I., Jamilatun, S., Rahayu, A. (2023). Exploring cacao husk waste – surface modification, characterization, and its potential for removing phosphate and nitrate ions. Journal of Ecological Engineering, 24(12), 282–292. https://doi.org/10.12911/22998993/174003
  • 4. Azni, M.E., Abidin, A.Z., Noorain, R., Hitam, S.M.S., Ernawati, L., Abdullah, R., Shoiful, A., Mohamad, R. (2022). Performance of Chlorella sp. and Multicultural Bacteria in Removing Pollutants from Nutrient-Rich Wastewater. ASEAN Journal of Chemical Engineering, 22(1), 42–57. https://doi.org/10.22146/ajche.69427
  • 5. Baiyin, B., Tagawa, K., Yamada, M., Wang, X., Yamada, S., Yamamoto, S., Ibaraki, Y. (2021). Study on plant growth and nutrient uptake under different aeration intensity in hydroponics with the application of particle image velocimetry. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111140
  • 6. Bhuvaneshwari, S., Sivasubramanian, V., Senthilrani, S. (2011). Biosorption of chromium from aqueous waste water using chitosan and desorption of chromium from biosorbent for effective reuse. Research Journal of Chemistry and Environment, 15(2). https://www.researchgate.net/publication/258850007
  • 7. Darajeh, N., Idris, A., Fard Masoumi, H.R., Nourani, A., Truong, P., Rezania, S. (2017). Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks. International Journal of Phytoremediation, 19(5), 413–424. https://doi.org/10.1080/1522 6514.2016.1244159
  • 8. Darajeh, N., Idris, A., Truong, P., Abdul Aziz, A., Abu Bakar, R., Che Man, H. (2014). Phytoremediation potential of Vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering. https://doi.org/10.1155/2014/683579
  • 9. Bala, D.J., Lalung, J., Ismail, N. (2014). Biodegradation of palm oil mill effluent (POME) by bacterial. International Journal of Scientific and Research Publications, 4(3). www.ijsrp.org
  • 10. Dorafshan, M.M., Abedi-Koupai, J., Eslamian, S., Amiri, M.J. (2023). Vetiver grass (Chrysopogon zizanoides L.): A hyper-accumulator crop for bioremediation of unconventional water. In Sustainability (Switzerland) 15(4). MDPI. https://doi.org/10.3390/su15043529
  • 11. Environmental and Forestry Instrument Standardization Agency. (2023). Standard National Indonesia for Water and Wastewater Quality (SNI). https://pusfaster.bsilhk.menlhk.go.id/index.php/ daftar-standar-nasional/sni/teknologipengujian/kualitas-air-dan-air-limbah/
  • 12. Gorzin, F., Abadi, M.B.R. (2018). Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science and Technology, 36(1–2), 149–169. https://doi.org/10.1177/0263617416686976
  • 13. Hadiyanto, H., Soetrisnanto, D., Christwardhana, M. (2014). Phytoremediation of palm oil mill effluent using pistia stratiotes plant and Algae Spirulina sp. for biomass production. International Journal of Engineering, 27(12(C)). https://doi.org/10.5829/idosi.ije.2014.27.12c.02
  • 14. Irvan. (2018). Processing of palm oil mill wastes based on zero waste technology. IOP Conference Series: Materials Science and Engineering, 309(1). https://doi.org/10.1088/1757899X/309/1/012136
  • 15. Kamyab, H., Chelliapan, S., Din, M.F.D., Rezania, S., Khademi, T., Kumar, A. (2018). Palm Oil Mill Effluent as an Environmental Pollutant. In Palm Oil. InTech. https://doi.org/10.5772/intechopen.75811
  • 16. Kramanandita, R., Bantacut, T., Romli, M., Makmoen, M. (2014). Utilization of palm oil mills wastes as source of energy and water in the production process of crude palm oil utilizations of palm oil mills wastes as source of energy and water in the production process of crude palm oil. Chemistry and Materials Research, 6(8), 46–53. https://www.researchgate.net/publication/280534556
  • 17. Lakshmi, K.S., Sailaja, V.H., Reddy, M.A. (2017). Phytoremediation - a promising technique in waste water treatment. International Journal of Scientific Research and Management. https://doi.org/10.18535/ijsrm/v5i6.20
  • 18. Liew, W.L., Kassim, M.A., Muda, K., Loh, S.K., Affam, A.C. (2015). Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. In Journal of Environmental Management 149, 222– 235. Academic Press. https://doi.org/10.1016/j. jenvman.2014.10.016
  • 19. Listiningrum, P., Idris, S.H., Vilandamargin, D., Nurosidah, S., Suhartini, S. (2022). Regulating biogas power plant from palm oil mill effluent (POME): A challenge to Indonesia’s just energy transition. Yustisia, 11(2), 77–93. https://doi.org/10.20961/yustisia.v11i2.56421
  • 20. Mahmoudpour, M., Gholami, S., Ehteshami, M., Salari, M. (2021). Evaluation of phytoremediation potential of vetiver grass (Chrysopogon zizanioides (L.) Roberty) for wastewater treatment. Advances in Materials Science and Engineering. https://doi.org/10.1155/2021/3059983
  • 21. Mahvi, A.H., Balarak, D., Bazrafshan, E. (2023). Remarkable reusability of magnetic Fe3O4-graphene oxide composite: a highly effective adsorbent for Cr(VI) ions. International Journal of Environmental Analytical Chemistry, 103(15), 3501–3521. https://doi.org/10.1080/03067319.2021.1910250
  • 22. Ministry of Agriculture Indonesia. (2024). Statistics of Estate Crops 2022–2024 (Cahyono, Ed.; 1st ed., 1). https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/
  • 23. Ministry of Environment and Forestry. (2014). Regulation Minister of Environment Republic Indonesia Number 5, 2014 Concerning Waste Water Quality Standards. https://jdih.menlhk.go.id/new2/home/portfolioDetails/5/2014/9#
  • 24. Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., Leh, C.P. (2021). Palm oil mill effluent treatment processes—A review. In Processes 9(5). MDPI AG. https://doi.org/10.3390/pr9050739
  • 25. Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. In SN Applied Sciences, 3(3). Springer Nature. https://doi.org/10.1007/s42452-021-04301-4
  • 26. Ng, Y.S., Chan, D.J.C. (2017). Wastewater phytoremediation by Salvinia molesta. Journal of Water Process Engineering, 15, 107–115. https://doi.org/10.1016/j.jwpe.2016.08.006
  • 27. Osman, N.A., Ujang, F.A., Roslan, A.M., Ibrahim, M.F., Hassan, M.A. (2020). The effect of palm oil mill effluent final discharge on the characteristics of pennisetum purpureum. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62815-0
  • 28. Rahayu, A., Hakika, D.C., Amrillah, N.A.Z., Veranica, V. (2023). Synthesis and characterization of ammonium polymer for anion removal in aqueous solutions. Polimery/Polymers, 68(10), 537–543. https://doi.org/10.14314/polimery.2023.10.3
  • 29. Rahayu, A., Jamilatun, S., Aldilla Fajri, J., Wah Lim, L. (2021). Characterization of organic polymer monolith columns containing ammonium quarternary as initial study for capillary chromatography. Journal of Islamic Science and Technology, 7(1). https://doi.org/10.22373/ekw.v7.i1.8764
  • 30. Rahayu, A., Jamilatun, S., Amrillah, N.A.Z., Nuraini, N., Mulyadi, I. (2023). Removal of ion nitrate and phospate using cocoa shell skin modified with functional polymer. Elkawnie, 9(2). https://doi.org/10.22373/ekw.v9i2.18260
  • 31. Sa’At, S.K.M., Yusoff, M.S., Zaman, N.Q., Ismail, H.A., Farraji, H. (2022). Polishing treatment of palm oil mill effluent phytoremediation by Scirpus grossus. AIP Conference Proceedings, 2541. https://doi.org/10.1063/5.0116396
  • 32. Safri, A., Fletcher, A.J., Safri, R., Rasheed, H. (2022). Integrated adsorption–photodegradation of organic pollutants by carbon xerogel/titania composites. Molecules, 27(23). https://doi.org/10.3390/ molecules27238483
  • 33. Sarkar, S., Tiwari, N., Basu, A., Behera, M., Das, B., Chakrabortty, S., Sanjay, K., Suar, M., Adhya, T.K., Banerjee, S., Tripathy, S.K. (2021). Sorptive removal of malachite green from aqueous solution by magnetite/coir pith supported sodium alginate beads: Kinetics, isotherms, thermodynamics and parametric optimization. Environmental Technology and Innovation, 24. https://doi.org/10.1016/j.eti.2021.101818
  • 34. Shahputra, M.A., Zen, Z. (2018). Positive and Negative Impacts of Oil Palm Expansion in Indonesia and the Prospect to Achieve Sustainable Palm Oil. IOP Conference Series: Earth and Environmental Science, 122(1). https://doi.org/10.1088/1755-1315/122/1/012008
  • 35. Silverstein, R.M., Webster, F.X., Kiemle, D.J. (2005). Spectrometric identification of organic compounds (7th edition). John Wiley & Sons.
  • 36. Singh, N.B., Nagpal, G., Agrawal, S., Rachna. (2018). Water purification by using adsorbents: a review. In Environmental Technology and Innovation 11, 187–240. Elsevier B.V. https://doi.org/10.1016/j.eti.2018.05.006
  • 37. Siswoyo, E., Utari, A.W., Mungkari, L.G.N. (2019). Adsorption combined phytoremediation system for treatment of laundry wastewater. MATEC Web of Conferences, 280, 05002. https://doi.org/10.1051/matecconf/201928005002
  • 38. Soo, P.L., Bashir, M.J.K., Wong, L.P. (2022). Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives. In Journal of Environmental Management 320. Academic Press. https://doi.org/10.1016/j.jenvman.2022.115750
  • 39. Suksong, W., Tukanghan, W., Promnuan, K., Kongjan, P., Reungsang, A., Insam, H., O-Thong, S. (2020). Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology, 296. https://doi.org/10.1016/j.biortech.2019.122304
  • 40. Tan, I.A.W., Jamali, N.S., Ting, H.T. (2019). Phytoremediation of palm oil mill effluent (POME) using Eichhornia crassipes. Journal of Applied Science & Process Engineering, 6(1). https://www. researchgate.net/publication/335136277
  • 41. Tan, K.A., Wan Maznah, W.O., Morad, N., Lalung, J., Ismail, N., Talebi, A., Oyekanmi, A.A. (2022). Advances in POME treatment methods: potentials of phycoremediation, with a focus on South East Asia. In International Journal of Environmental Science and Technology 19(8), 8113–8130. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13762-021-03436-6
  • 42. The Commissioner of Law Revision, M.F.S.L.D. of E. (1982). Environmental Quality (Prescribed Premises) (Crude Palm Oil) (Amendment) Regulations. https://www.doe.gov.my/wp-content/ uploads/2021/11/Environmental_Quality_Prescribed_Premises_Crude_Palm_Oil_Amendment_ Regulations_1982_-_P.U.A_183-82.pdf
  • 43. Türker, O.C., Baran, T. (2018). A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (b) removal from drinking water. International Journal of Phytoremediation, 20(2), 175–183. https://doi.org/10.1080/15226514.2017.1350137
  • 44. Ujang, F.A., Osman, N.A., Idris, J., Halmi, M.I.E., Hassan, M.A., Roslan, A.M. (2018). Start-up treatment of palm oil mill effluent (POME) final discharge using Napier Grass in wetland system. IOP Conference Series: Materials Science and Engineering, 368(1). https://doi.org/10.1088/1757-899X/368/1/012008
  • 45. Wang, R., Baldy, V., Périssol, C., Korboulewsky, N. (2012). Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations. Journal of Environmental Management, 95(SUPPL.). https://doi.org/10.1016/j.jenvman.2011.03.021
  • 46. Watharkar, A.D., Khandare, R.V., Waghmare, P.R., Jagadale, A.D., Govindwar, S.P., Jadhav, J.P. (2015). Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish. Journal of Hazardous Materials, 283, 698–704. https://doi.org/10.1016/j.jhazmat.2014.10.019
  • 47. Wu, T.Y., Mohammad, A.W., Jahim, J.M., Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. In Journal of Environmental Management 91(7), 1467–1490. Academic Press. https://doi.org/10.1016/j.jenvman.2010.02.008
  • 48. Zainal, N.H., Jalani, N.F., Mamat, R., Astimar, A.A. (2017). A review on the development of palm oil mill effluent (POME) final discharge polishing treatments. Journal of Oil Palm Research, 29(4), 528–540. https://doi.org/10.21894/jopr.2017.00012
  • 49. Zhang, H., Zhou, X., Lv, X., Xu, X., Weng, Q., Lei, K. (2023). Exploration of the factors that influence total phosphorus in surface water and an evaluation of surface water vulnerability based on an advanced algorithm and traditional index method. Journal of Environmental Management, 342. https://doi.org/10.1016/j.jenvman.2023.118155
  • 50. Zulfahmi, I., Kandi, R.N., Huslina, F., Rahmawati, L., Muliari, M., Sumon, K.A., Rahman, M.M. (2021). Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environmental Technology and Innovation, 21. https://doi.org/10.1016/j.eti.2020.101260
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1cce7e6-54e8-489e-b391-3c84970bf261
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.