PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of NI-TIO2 and NI-TIO2-graphene coatings and heat treatment hardening on solid particles erosion resistance of grade 410 stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rocznik
Strony
571--593
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, University of Baghdad Al Jadriya, Baghdad, 10070, Iraq
  • Mechanical Engineering Department, University of Baghdad Al Jadriya, Baghdad, 10070, Iraq
Bibliografia
  • 1. Immarigeon J.P., Chow D., Parameswaran V.R., Au P., Saari H., Koul A.K., Erosion testing of coatings for aero engine compressor components, Advanced Performance Materials, 4(4): 371–388, 1997, doi: 10.1023/A:1008644527599.
  • 2. Alqallaf J., Ali N., Teixeira J.A., Addali A., Solid particle erosion behaviour and protective coatings for gas turbine compressor blades – A review, Processes, 8(8): 984, 2020, doi: 10.3390/PR8080984.
  • 3. Sharma V., Kaur M., Bhandari S., Singh S., Influence of velocity, concentration, and size of silt particles on erosion of thermal sprayed Ni/TiO2/Al2O3 coatings, Surface Review and Letters, 2240001, 2022, doi: 10.1142/S0218625X22400017.
  • 4. Bousser E., Martinu L., Klemberg-Sapieha J.E., Solid particle erosion mechanisms of protective coatings for aerospace applications, Surface and Coatings Technology, 257: 165–181, 2014, doi: 10.1016/j.surfcoat.2014.08.037.
  • 5. Finnie I., Erosion of surfaces by solid particles, Wear, 3 (2): 87–103, 1960, doi: 10.1016/ 0043-1648(60)90055-7.
  • 6. Hutchings I., Shipway P., Tribology Friction and Wear of Engineering Materials, 2nd ed., Butterworth-Heinemann, 2017, doi: 10.1016/B978-0-08-100910-9.09988-8.
  • 7. Tilly G.P., A two stage mechanism of ductile erosion, Wear, 23(1): 87–96, 1973, doi: 10.1016/0043-1648(73)90044-6.
  • 8. Bellman Jr. R., Levy A., Erosion mechanism in ductile metals, Wear, 70(1): 1–27, 1981, doi: 10.1016/0043-1648(81)90268-4.
  • 9. Hassani S., Bielawski M., Beres W., Martinu L., Balazinski M., KlembergSapieha J.E., Predictive tools for the design of erosion resistant coatings, Surface and Coatings Technology, 203(3–4): 204–210, 2008, doi: 10.1016/j.surfcoat.2008.08.050.
  • 10. Azzi M., Amirault P., Paquette M., Klemberg-Sapieha J.E., Martinu L., Corrosion performance and mechanical stability of 316L/DLC coating system: Role of interlayers, Surface and Coatings Technology, 204(24): 3986–3994, 2010, doi: 10.1016/ j.surfcoat.2010.05.004.
  • 11. Zeng X.T., Goto T., Zhao L.R., Ding X.Z., Liew S.C., Li G.Y., Erosive wear properties of Ti-Si-N nanocomposite coatings studied by micro-sandblasting, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23(2): 288–292, 2005, doi: 10.1116/1.1861053.
  • 12. Wei R., Rincon C., Langa E., Yang Q., Microstructure and tribological performance of nanocomposite Ti-Si-C-N coatings deposited using hexamethyldisilazane precursor, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 28(5): 1126–1132, 2010, doi: 10.1116/1.3463709.
  • 13. Bousser E., Martinu L., Klemberg-Sapieha J.E., Solid particle erosion mechanisms of hard protective coatings, Surface and Coatings Technology, 235: 383–393, 2013, doi: 10.1016/j.surfcoat.2013.07.050.
  • 14. Bousser E., Benkahoul M., Martinu L., Klemberg-Sapieha J.E., Effect of microstructure on the erosion resistance of Cr-Si-N coatings, Surface and Coatings Technology, 203(5–7): 776–780, 2008, doi: 10.1016/j.surfcoat.2008.08.012.
  • 15. Shao W., Nabb D., Renevier N., Sherrington I., Luo J.K., Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition, IOP Conference Series: Materials Science and Engineering, 40(1): 1–6, 2012, doi: 10.1088/1757-899X/40/1/012043.
  • 16. Uysal M., Algul¨ H., Duru E., Kahraman Y., Alp A., Akbulut H., Tribological properties of Ni-W-TiO2-GO composites produced by ultrasonically-assisted pulse electro co-deposition, Surface and Coatings Technology, 410: 126942, 2021, doi: 10.1016/ j.surfcoat.2021.126942.
  • 17. De Lima M.S.F., Do Espirito Santo A.M., Phase transformations in an AISI 410S stainless steel observed in directional and laser-induced cooling regimes, Materials Research, 15(1): 32–40, 2012, doi: 10.1590/S1516-14392012005000003.
  • 18. Chen W., He Y., Gao W., Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings, Surface and Coatings Technology, 204(15): 2487–2492, 2010, doi: 10.1016/j.surfcoat.2010.01.036.
  • 19. Yasin G., Arif M., Nizam M.N., Shakeel M., Khan M.A., Khan W.Q., Hassan T.M., Abbas Z., Farahbakhsh I., Zuo Y., Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition, RSC Advances, 8(36): 20039–20047, 2018, doi: 10.1039/ c7ra13651j.
  • 20. Bukowski B., Deskins N.A., The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory, Physical Chemistry Chemical Physics, 17(44): 29734–29746, 2015, doi: 10.1039/c5cp04073f.
  • 21. American Society for Metals, Atlas of Microstructures of Industrial Alloys, Taylor Lyman [Ed], 8th ed., ASM, Metals Park, Ohio, 1972.
  • 22. Reade International Corp, Mohs’ Hardness (Typical) of Abrasives, Reade International Corp, 2020, https://www.reade.com/reade-resources/reference-educational/readereference-chart-particle-property-briefings/mohs-hardness-typical-of-abrasives#:˜:text= Most abrasives that effectively achieve,hardness of at least 6.0.&text=The Mohs’ scale of hardness,a m (accessed Dec. 23, 2021).
  • 23. American Society for Testing and Materials, G76-07, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, ASTM International, G76-18: 1–6, 2018, doi: 10.1520/G0076-18.2.
  • 24. Kleis I., Kulu P., Solid Particle Erosion: Occurrence, Prediction and Control, SpringerVerlag, London, 2008, doi: 10.1007/978-1-84800-029-2.
  • 25. Al-Asadi M.M., Al-Tameemi H.A., The effect of diamond like carbon coating on the solid particles erosion resistance of grade 410 stainless steel, Wear, 514–515: 204584, 2023, doi: 10.1016/j.wear.2022.204584.
  • 26. Al-Asadi M.M., Al-Tameemi H.A., A review of tribological properties and deposition methods for selected hard protective coatings, Tribology International, 176: 107919 2022, doi: 10.1016/j.triboint.2022.107919.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1cc5294-5343-4ed6-b983-1d0e2b39307c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.