PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring and remediation of heavy metal polluted soils - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Monitoring oraz remediacja gleb zanieczyszczonych metalami ciężkimi - przegląd stosowanych rozwiązań
Języki publikacji
EN
Abstrakty
EN
Soil contamination by heavy metals poses a threat to plants, terrestrial animals, and in consequence, human health. Heavy metals emitted primarily by anthropogenic activity may be accumulated in edible plant or animal tissues and then consumed by humans. The need for a reliable detection and continuous monitoring of heavy metal contents in agricultural soils is undeniable. Moreover, a cost-effective and environmental friendly remediation methods are required for and efficient mobilization or immobilization of the metal in soil. This paper reviews two promising in situ monitoring methods (Vis-NIR/MIR and PXRF) and four remediation methods (physical/chemical remediation, animal remediation, phytoremediation and bioremediation) that could be used in order to improve the quality of heavy metal polluted soils.
PL
Zanieczyszczenie gleb metalami ciężkimi stanowi poważne zagrożenie dla roślin, zwierząt glebowych oraz, w konsekwencji, dla ludzkiego zdrowia. Metale ciężkie, emitowane głównie w wyniku ludzkiej aktywności, mogą akumulować się w jadalnych częściach roślin oraz w mięsie zwierząt hodowlanych, spożywanych następnie przez ludzi. Potrzeba wiarygodnej detekcji oraz stałego monitoringu metali ciężkich w glebach uprawnych jest niepodważalna. Ponadto, niezbędne jest zastosowanie taniej oraz przyjaznej środowisku metody remediacji zanieczyszczonych obszarów, celem zwiększenia lub zmniejszenia mobilności metalu w glebie. Ta praca przeglądowa skupia się na analizie dwóch obiecujących metod monitoringowych (Vis-NIR/MIR oraz PXRF) oraz czterech metod remediacyjnych (remediacji fizycznej/chemicznej, remediacji przy użyciu zwierząt, fitoremediacji oraz bioremediacji), które mogą zostać użyte w odniesieniu do gleb zanieczyszczonych metalami ciężkimi.
Twórcy
  • Poznan University of Life Sciences, Institute of Food Technology of Plant Origin, Wojska Polskiego 31, 60-624 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965 Poznań, Poland
  • Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland
Bibliografia
  • [1] Horta A., Malone B., Stockmann U., Minasny B., Bishop T.F.A., McBratney A.B., Pallasser R., Pozza L.: Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review, Geoderma, 2015, 241-242, 180-209.
  • [2] Panagos P., Van Liedekerke M., Yigini Y., Montanarella L.: Contaminated sites in Europe: review of the current situation based on data collected through a European network, Journal of Environmental and Public Health, 2013.
  • [3] Shia T., Chena Y., Liua Y., Wub G.: Visible and near-infrared reflectance spectroscopy - An alternative for monitoring soil contamination by heavy metals, Journal of Hazardous Materials, 2014, 265, 166-176.
  • [4] Park J.H., Lamba D., Paneerselvam P., Choppala G., Bolan N., Chung J.-W.: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils, Journal of Hazardous Materials, 2011, 185, 549-574.
  • [5] Adriano D.: Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, Springer Verlag, New York, 2001.
  • [6] Fenger J.: Air pollution in the last 50 years - from local to global, Atmospheric Environment, 2009, 43, 13-22.
  • [7] Bolana N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkhamg M.B., Scheckel K.: Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?, Journal of Hazardous Materials, 2014, 266, 141166.
  • [8] Bolan N.S., Khan M.A., Donaldson J., Adriano D.C., Matthew C.: Distribution and bioavailability of copper in farm effluent, Science of Total Environment, 2003, 309, 225-236.
  • [9] Chopin E., Marin B., Mkoungafoko R., Rigaux A., Hopgood M., Delannoy E., Cancès B., Laurain M.: Factors affecting distribution and mobility of trace elements (Cu, Pb Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France, Environmental Pollution, 2008, 156, 1092-1098.
  • [10] Owsianiak M., Holm P.E., Fantke P., Christiansen K.S., Borggaard O.K., Hauschild M.Z.: Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source, Environmental Pollution, 2015, 206, 400-410.
  • [11] Singh A., Prasad A.M.: Remediation of heavy metal contaminated ecosystem: an overview on technology advancement, International Journal of Environmental Science and Technology, 2015, 12, 353-366.
  • [12] Viscarra Rossel R.A., Walvoort D.J.J.,McBratney A.B., Janik L.J., Skjemstad J.O.: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 2006, 131, 59-75.
  • [13] Wu Y.Z., Chen J., Ji J.F., Gong P., Liao Q.L., Tian Q.J., Ma H.R.: A mechanism study of reflectance spectroscopy for investigating heavy metals in soils, Soil Science Society of America Journal, 2007, 71, 918-926.
  • [14] Kooistra L., Wehrens R., Leuven R.S.E.W., Buydens L.M.C.: Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains, Analytica Chimica Acta, 2001, 446, 97-105.
  • [15] Liu Y.L., Li W., Wu G.F., Xu X.G.: Feasibility of estimating heavy metal contaminations in floodplain soils using laboratorybased hyperspectral data - A case study along Le’an River, China, Geo-Spatial Information Science, 2011, 14, 10-16.
  • [16] Gannouni S., Rebai N., Abdeljaoued S.: A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the north of Tunisia, Journal of Geographic Information System, 2012, 4, 242-253.
  • [17] Kooistra L., Wanders J., Eperma G.F., Leuven R.S.E.W., Wehrens R., Buydens L.M.C.: The potential of field spectroscopy for the assessment of sediment properties in river floodplains, Analytica Chimica Acta, 2003, 484, 189-200.
  • [18] Ben-Dor E., Chabrillat S., Demattê J.A.M., Taylor G.R., Hill J., Whiting M.L., Sommer S.: Using imaging spectroscopy to study soil properties, Remote Sensing of Environment, 2009, 113, S38S55.
  • [19] Potts P.: Introduction, analytical instrumentation and application overview. In: Potts, Philip J., West, Margaret (Eds.), Portable Xray Fluorescence Spectrometry: Capabilities for In Situ Analysis, Royal Society of Chemistry, Cambridge, UK, 2008, pp. 1-12.
  • [20] Radu T., Diamond D.: Comparison of soil pollution concentrations determined using AAS and portable XRF techniques, Journal of Hazardous Materials, 2009, 171, 1168-1171.
  • [21] Kalnicky D.J., Singhvi R.: Field portable XRF analysis of environmental samples, Journal of Hazardous Materials, 2001, 83, 93-122.
  • [22] Radu T., Gallagher S., Byrne B., Harris P., Coveney S., McCarron S., McCarthy T., Diamond D.: Portable X-ray fluorescence as a rapid technique for surveying elemental distributions in soil, Spectroscopy Letters, 2013, 46, 516-526.
  • [23] Weindorf D.C., Paulette L., Man T.: In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania, Environmental Pollution, 2013, 182, 92-100.
  • [24] Wenzel W.W., Unterbrunner R., Sommer P., Sacco P.: Chelateassisted phytoextraction using canola (Brassica napus L) in outdoors pot and lysismeter experiments, Plant and Soil, 2003, 249, 83-96.
  • [25] Wu G., Kang H., Zhan X., Shao H., Chu L., Ruan C.: A critical review on the bioremoval of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities, Journal of Hazardous Materials, 2010, 174, 18.
  • [26] Sriprang R., Hayashi M., Ono H., Takagi M., Hirata K., Murooka Y.. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase, Applied and Environmental Microbiology, 2003, 69, 1791-1796.
  • [27] Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C.: Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, in: Phytoremediation of Contaminated Soil and Water, CRC Press, Boca Raton, FL, 2000, pp. 85-107.
  • [28] Crowley D.E., Wang Y.C., Reid C.P.P., Szaniszlo P.J.: Mechanisms of iron acquisition from siderophores by microorganisms and plants, Plant and Soil, 1991, 130, 179-198.
  • [29] Salt D.E., Rauser W.E.: MgATP-dependent transport of phytochelatins across the tonoplast of oat roots, Plant Physiology, 1995, 107, 1293-1301.
  • [30] Salt D.E., Blaylock M., Kumar P.B.A.N., Dushenkov V., Ensley B.D., Chet I., Raskin I.: Phytoremediation: a novel strategy for the removal of toxic metal from the environment using plants, Biotechnology, 1995, 13, 468-474.
  • [31] Selvam A., Wong J.W.: Phytochelatin synthesis and cadmium uptake of Brassica napus, Environmental Technology, 2008, 29, 765-773.
  • [32] Tang Y.T., Qiu R.L., Zeng X.W., Ying R.R., Yu F.M., Zhou X.Y.: Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata, Environmental and Experimental Botany, 2009, 66, 126-134.
  • [33] Jadia C.D., Fulekar M.H.: Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum), Journal of Applied Biosciences, 2008, 10, 491-499.
  • [34] Yuebing S., Qixing Z., Guanlin G.: Phytoremediation and strengthening measures for soil contaminated by heavy metals, Chinese Journal of Envionmental Engineering, 2007, 1, 23-28.
  • [35] Lugtenberg B.J.J., de Weger L.A., Bennett J.W.: Microbial stimulation of plant growth and protection from disease, Current Opinion in Biotechnology, 1991, 2, 457-464.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1c4e609-d228-4f24-a4c8-da87ee927958
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.