PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems of operating internal combustion engines in dusty conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Problemy użytkowania silników spalinowych w warunkach dużego zapylenia powietrza
Języki publikacji
EN PL
Abstrakty
EN
The operating conditions of motor vehicle engines in dusty environments resulting from sandy terrain, as well as helicopters using adventurous airstrips, leading to the 'brownout' phenomenon, are discussed. The parameters of mineral dust are examined, including particle shape, hardness, size, and air concentration, along with their impact on the accelerated wear of piston and turbine engine components. It is demonstrated that the primary effect of dust particles entering internal combustion engines through the intake air stream is the accelerated abrasive and erosive wear of individual components and entire structural assemblies of both reciprocating and turbine engines. Additionally, dust accumulation on turbine engine components is highlighted. Both factors contribute to the parallel deterioration of power characteristics, fuel consumption, and oil consumption. Cases of tragic helicopter engine failures caused by the absorption of excessive dust mass are also presented.
PL
Przedstawiono warunki pracy silników pojazdów mechanicznych użytkowanych w warunkach dużego zapylenia powietrza wynikającego z piaszczystego podłoża oraz śmigłowców korzystających z przygodnych lądowisk, czego skutkiem jest zjawisko „brownout”. Omówiono parametry pyłu mineralnego, zwracając uwagę na kształt, twardość i rozmiar cząstek oraz stężenie w powietrzu i ich wpływ na przyspieszone zużycie elementów silników tłokowych i turbinowych. Wykazano, że zasadniczym skutkiem oddziaływania ziaren pyłu przedostających się wraz ze strumieniem powietrza wlotowego do silników spalinowych jest przyspieszone zużycie ścierne i erozyjne poszczególnych części i całych zespołów konstrukcyjnych silników tłokowych i turbinowych oraz tworzenie się osadów pyłowych na elementach silników turbinowych. Oba oddziaływania powodują równolegle pogorszenie charakterystyk mocy, zużycia paliwa i zużycia oleju. Przedstawiono przypadki tragicznych w skutkach awarii silników śmigłowców spowodowanych wchłonięciem nadmiernej masy pyłu.
Czasopismo
Rocznik
Strony
61--104
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Military University of Technology (Wojskowa Akademia Techniczna), Poland
  • Air Force Institute of Technology (Instytut Techniczny Wojsk Lotniczych), Poland
Bibliografia
  • 1. Honeywell AGT1500 - Archived 3/2009. https://www.forecastinternational.com/ archive/disp_pdf.cfm?DACH_RECNO=180.
  • 2. T. Dziubak and M. Ślęzak, “Characteristics of pollutants emitted by motor vehicles and their impact on the environment and engine operation”, Combustion Engines, online, https://doi.org/10.19206/CE-194628.
  • 3. A. Szczepankowski, J. Szymczak and R. Przysowa, “The Effect of a Dusty Environment Upon Performance and Operating Parameters of Aircraft Gas Turbine Engines”, Conference: Specialists’ Meeting - Impact of Volcanic Ash Clouds on Military Operations NATO AVT-272-RSM-047 At: Vilnius. May 2017. doi:10.14339/STO-MP-AVT-272-06-PDF.
  • 4. J. Milluzzo, and J.G. Leishman, “Assessment of Rotorcraft Brownout Severity in Terms of Rotor Design Parameters”, Journal of the American Helicopter Society 55, 032009 (2010).
  • 5. U.S. Army, https://www.army.mil/article/136083/protecting_pilots_from_danger, https://www.army.mil/article/84480/paratroopers_clear_ieds_engage_triggerman (Accessed 17 January 2025).
  • 6. J.P. Van der Walt, and A. Nurick, “Erosion of dust-filtered helicopter turbine engines part I: basic theoretical considerations”, Journal of Aircraft, 32(1), 106-111. 1995a. https://doi.org/10.2514/3.56919.
  • 7. J.P. Van der Walt, and A. Nurick, “Erosion of dust-filtered helicopter turbine engines part II: erosion reduction” Journal of Aircraft, 32(1), 112-117. 1995b. https://doi.org/10.2514/3.46690.
  • 8. N.M. Bojdo, “Rotorcraft engine air particle separation”, The University of Manchester (United Kingdom). 2012.
  • 9. Wei-Han Su, “Dust and atmospheric aerosol”, Resources, Conservation and Recycling 16, 1996. 1-14. https://doi.org/10.1016/0921-3449(95)00045-3.
  • 10. T. Dziubak, “Research into a Two-Stage Filtration System of Inlet Air to the Internal Combustion Engine of a Motor Vehicle”. Energies 2024, 17, 6295. https://doi.org/10.3390/en17246295.
  • 11. J.W. Schaeffer and L.M. Olson, “Air Filtration Media for Transportation Applications”, Filtration & Separation 35, 2, 1998. 124-129. https://doi.org/10.1016/S0015-1882(97)80292-3.
  • 12. J.K. Lee, S.Ch. Kim, and B.Y.H. Liu, “Effect of Bi-Modal Aerosol Mass Loading on the Pressure Drop for Gas Cleaning Industrial Filters”, Aerosol Science and Technology 35, 4, 2001. 805-814. https://doi.org/10.1080/027868201753227352.
  • 13. K. Baczewski and M. Hebda, „Filtracja płynów eksploatacyjnych”, MCNEMT, Radom 1991/92 (In Polish).
  • 14. C.E. Summers, “The physical characteristics of road and field dust”, SAE Technical Paper, 250010,1925, 10.4271/250010.1925.
  • 15. G.E. Thomas and R.M. Culbert, “Ingested Dust, Filters, and Diesel Engine Ring Wear. Society Of Automotive Engineers”, Inc. West Coast Meeting San Francisco, Calif. August 12-15, 1968. https://doi.org/10.4271/680536.
  • 16. N. Bojdo and A. Filippone, “Effect of desert particulate composition on helicopter engine degradation rate”, 40th European Rotorcraft Forum, Southampton, Conference Paper. September 2014. https://www.researchgate.net/publication/265556798.
  • 17. J.L. Smialek, F.A. Archer and R.G. Garlick, “Turbine Airfoil Degradation in the Persian Gulf War. The Journal of The Minerals”, Metals & Materials Society (TMS). 46(12), 39-41. 1994.
  • 18. P. Dzierżanowski el. al., „Napędy Lotnicze. Turbinowe silniki śmigłowe i śmi-głowcowe”, WKŁ Warszawa, Poland, 1985 (in Polish).
  • 19. Mohs scale, Wikipedia: https://en.wikipedia.org/wiki/Mohs_scale (Accessed 24 January 2025).
  • 20. B. Woronko and R. Żurawek, „Mikromorfologia powierzchni ziaren eolicznego pyłu kwarcowego z pokryw stokowych Ślęży (Przedgórze Sudeckie)”, Przegląd Geologiczny, 52, nr 4, pp. 321-324, 2004.
  • 21. T. Jaroszczyk, “Air Filtration in Heavy-Duty Motor Vehicle Applications”, Proc. Dust Symposium III Vicksburg MS, 15-17 September 1987.
  • 22. J.W. Schaeffer and L.M. Olson, „Air Filtration Media for Transportation Applications”, Filtration & Separation, 35(2), pp. 124-129, 1998.
  • 23. T. Jaroszczyk, B.A. Pardue, S.P. Heckel, and K.J Kallsen, „Engine air cleaner filtration performance – theoretical and experimental background of testing”. Presented at the AFS Fourteenth Annual Technical Conference and Exposition, May 1, 2001, Tampa, Florida. Included in the Conference Proceedings (Session 16).
  • 24. R.G. Pinnick et. al., “Dust Generated by Vehicular Traffic on Unpaved Roadways: Sizes and Infrared Extinction Characteristics”, Aerosol Sci. Technol. 1985, 4, 99-121.
  • 25. M. Barbolini, F. Di Pauli, and M. Traina, „Simulation der luftfiltration zur auslegung von filterelementen“, MTZ - Motortechnische Zeitschrift 5(11), pp. 52-57, 2014.
  • 26. T. Dziubak, „Zapylenie powietrza wokół pojazdu terenowego”, Wojskowy Przegląd Techniczny. 3(257), 154-157. 1990. (in Polish).
  • 27. S. Burda and Z. Chodnikiewicz, „Konstrukcja i badania pyłowe filtrów powietrza silnika czołgowego”, Biuletyn WAT, 3(115), 12-34, 1962, (in Polish).
  • 28. C. Chatten, “Sandblaster 2 support of see-through technologies for particulate brownout, Task 5 Final Technical Report”, DTIC Document, 2007.
  • 29. J. Long et. al., “Dust Loading Performance of a Novel Submicro-Fiber Composite Filter Medium for Engine”, Materials 11(2038), 17. 2018.
  • 30. N. Bojdo and A. Filipone, “Effect of Desert Particulate Composition on Helicopter Engine Degradation Rate”. Conference: 40th European Rotorcraft Forum At: Southampton, September 2014. DOI: 10.13140/2.1.2959.8086.
  • 31. G. Koszałka and A. Suchecki, “Changes in performance and wear of small diesel engine during durability test”, Combustion Engines, 162(3), 34-40. 2015.
  • 32. J. Fitch, “Clean Oil Reduces Engine Fuel Consumption”, Practicing Oil Analysis Magazine 11-12, 2002. https://www.machinerylubrication.com/Read/401/oil-engine-fuel-consumption. (Accessed 2 December 2024).
  • 33. G. Koszałka and A. Suchecki, “Changes in blow-by and compression pressure of a diesel engine during a bench durability test”. Combust. Engines 154(3), 34-39. 2013.
  • 34. T. Bastuck, F. Böhnke, S. Hoppe, and R Mittler. „Systemische Kolbenringausle-gung zur Reduzierung von Partikelrohemissionen“, MTZ – Motortechnische Zeitschrift; 81(10): 50-55. 2020.
  • 35. M. Gunkel, M. Frensch, A. Robota, and R. Gelhausen, „Innermotorische Emissionsreduzierung Zusammenhang zwischen Partikelemissionen und Ölverbrauch“, MTZ - Motortechnische Zeitschrift 79(7-8): 46-51, 2018.
  • 36. Ch. Lensch-Franzen, M. Gohl, P. Scholl, and F. Paoloni, „Einfluss der Flüchtigkeit von Schmierölen auf die Öl- und Partikelemissionen“, MTZ - Motortechnische Zeitschrift, 80(9), 46-55. 2019.
  • 37. P. Stallard, “Helicopter engine protection”, Pall Aerospace, a division of Pall Europe Ltd, Portsmouth. Perfusion 12, 263-267, 1997.
  • 38. Fatal MV-22 crash in Hawaii linked to excessive debris ingestion.” https://www.flightglobal.com/news/articles/fatal-mv-22-crash-in-hawaii-linked-to-excessivedebr-419484/ (Accessed 28 November 2024).
  • 39. N. Bojdo and A. Filippone, “Operational Performance Parameters of Engine Inlet Barrier Filtration Systems for Rotorcraft”. Conference: American Helicopter Society 67th Annual Forum, Virginia Beach, VA, May 3-5, 2011. https://www.researchgate.net/publication/266087797.
  • 40. A. Hamed, W. Tabakoff, and R. Wenglarz, “Erosion and deposition in turbomachinery”, Journal of Propulsion and Power, Vol. 22, (2) 2006.
  • 41. M.E. Taslim and S. Spring, “A Numerical Study of Sand Particle Distribution, Density, and Shape Effects on the Scavenge Efficiency of Engine Inlet Particle Separator Systems”, Journal of the American. 55, 022006 2010. https://doi.org/10.4050/JAHS.55.022006.
  • 42. A. Vogel et. al., “Simulation of volcanic ash ingestion into a large aero engine: Particle-fan interactions”, Journal of Turbomachinery 141(1). 2018. 10.1115/1.4041464.
  • 43. Types of Igneous Rocks. https://scienceviews.com/geology/igneoustypes.html.
  • 44. W.R. Chen, and L.R. Zhao, “Review – Volcanic ash and its influence on aircraft engine components”, Procedia Engineering 99, 2015. 795-803.
  • 45. W. Tabakoff, and A. Hamed, “Installed engine performance in dust-laden atmosphere”. Aircraft Design Systems and Operations Meeting. October 31 -November 2, 1984/San Diego, California. https://doi.org/10.2514/6.1984-2488.
  • 46. Z.J. Przedpelski, and T.J. Casadevall, “Impact of Volcanic Ash from 15 December 1989 Redoubt Volcano Eruption on GE CF6-80C2 Turbofan Engines”. In Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety, U.S. Geological Survey Bulletin 2047, 129-135. 1994. https://www.researchgate.net/publication/237216295.
  • 47. T.J. Grindle and F.W. Burcham, “Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud”, NASA/TM-2003-212030, August 2003.
  • 48. G. Bagheri, and C. Bonadonna, “Aerodynamics of Volcanic Particles: Characterization of Size, Shape, and Settling Velocity”. In: Volcanic Ash: hazard observation. [s.l.], Elsevier, 39-52. 2016.
  • 49. A. Vogel, et. al., “Reference data set of volcanic ash physicochemical and optical properties”. Journal of Geophysical Research: Atmospheres. 10.1002/2016JD026328. 9485-9514. 2017.
  • 50. G. Liu, et.al., “Simulation Study on the Effect of Flue Gas on Flow Field and Rotor Stress in Gas Turbines”, Energies 14, 6135. 2021. https://doi.org/10.3390/en14196135.
  • 51. A. Corsini, et. al., “Predicting Blade Leading Edge Erosion in an Axial Induced Draft Fan”. Journal of Engineering for Gas Turbines and Power, 134(4), 042601. 2012.
  • 52. C. Taltavull, J. Dean, and T.W. Clyne, “Adhesion of volcanic ash particles under controlled conditions and implications for their deposition in gas turbines”, Advanced Engineering Materials, 18(5), 803-813. 2016. 10.1002/adem.201500371.
  • 53. A.J. Prata, N.I. Kristiansen, H.E. Thomas, and A. Stohl, “Ash metrics for European and trans-Atlantic air routes during the Eyjafjallajökull eruption 14 April to 23 May 2010. Journal of Geophysical Research: Atmospheres, 123, 5469-5483. 2018. https://doi.org/10.1002/2017JD028199.
  • 54. R. Clarkson and H. Simpson, “Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability against Ash Cloud Occurrence”, Conference: Specialists’ Meeting - Impact of Volcanic Ash Clouds on Military Operations NATO AVT-272-RSM-047 At: Vilnius. May 2017. 10.14339/STO-MP-AVT-272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1c3d3f1-1280-4f7b-aad1-b8ed1b05b805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.