PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroorganizmy a ropa naftowa – nierozerwalny duet

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Słowa kluczowe
Twórcy
  • Polskie Towarzystwo Mikrobiologów
autor
  • Polskie Towarzystwo Mikrobiologów
Bibliografia
  • 1. Miyoshi, M., Durchbohrung von Membranen durch Pilzfaden. Jahrb. Wiss. Bot. 1895, 28, 269-270.
  • 2. Sohngen, N. L., Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. II 1906, I5, 513-517.
  • 3. Kaserer, H., Ueber die Oxydation des Wasserstoffes und des Methans durch Mikroorganismen. Centralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. II 1906, 15, 573-576.
  • 4. Ollivier, B.; Magot, M., Petroleum Microbiology. ASM Press: Washington. D.C., 2005.
  • 5. Bastin, E. S.; Greer, F. E.; Merritt, C. A.; Moulton, G., The presence of sulphate reducing bacteria in oil field waters. Science 1926, 63, 21-24.
  • 6. Lipman, C. B.; Greenberg, L., A new autotrophic bacterium which oxidises ammonia directly to ni- trate and decomposes petroleum. Nature 1932,129, 204-205.
  • 7. Belyaev, S. S.; Wolkin, R.; Kenealy, W. R.; Deniro, M. J.; Epstein, S.; Zeikus, J. G., Methanogenic bacteria from the Bondyuzhskoe oil-field. General characterization and analysis of stable carbon isotopic fractionation. Appl. Environ. Microbiol. 1983, 45, (2), 691-697.
  • 8. Azadpour, A.; Brown, L. R.; Vadie, A. A., Examination of thirteen petroliferous formations for hydrocarbon-utilizing sulfate-reducing microorganisms. J. Ind. Microbiol. 1996, 16, (5), 263-266.
  • 9. Spark, I.; Patey, I.; Duncan, B.; Hamilton, A.; Devine, C.; McGovern-Traa, C., The effects of indigenous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Miner. 2000, 35, (1), 5-12.
  • 10. Head, I. M.; Jones, D. M.; Roling, W. F. M., Mari- ne microorganisms make a meal of oil. Nat. Rev Microbiol. 2006, 4, (3), 173-182.
  • 11. Aitken, C. M.; Jones, D. M.; Larter, S. R., Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 2004, 431, (7006), 291-294.
  • 12. Head, I. M.; Jones, D. M.; Larter, S. R., Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, (6964), 344-352.
  • 13. Jones, D. M.; Head, I. M.; Gray, N. D.; Adams, J. J.; Rowan, A. K.; Aitken, C. M.; Bennett, B.; Huang, H.; Brown, A.; Bowler, B. F. J.; Oldenburg, T.; Erdmann, M.; Larter, S. R., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008, 451, (7175), 176-U6.
  • 14. Bushnell, L. D.; Haas, H. E, The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 1941, 41, (5), 653-673.
  • 15. Schneiker, S.; dos Santos, V.; Bartels, D.; Bekel, T.; Brecht, M.; Buhrmester, J.; Chernikova, T. N.; Denaro, R.; Ferrer, M.; Gertler, C.; Goesmann; A.; Golyshina, O. V.; Kaminski, F.; Khachane, A. N.; Lang, S.; Linke, B.; McHardy, A. C.; Meyer, F.; Nechitaylo, T.; Puhler, A.; Regenhardt, D.; Rupp, O.; Sabirova, J. S.; Selbitschka, W.; Yakimov, M. M.; Timmis, K. N.; Vorholter, F. J.; Weidner, S.; Kaiser, O.; Golyshin, P. N., Genome sequence of the ubi- quitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 2006, 24, (8), 997-1004.
  • 16. Bragg, J. R.; Prince, R. C.; Harner, E. J.; Atlas, R. M., Effectiveness of bioremediation for the Exxon Valdez oil-spill. Nature 1994, 368 (6470), 413-418.
  • 17. Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B., Long-term ecosystem response to the Exxon Valdez oil spill. Science 2003, 302, (5653), 2082-2086.
  • 18. Atlas, R.; Bragg, J., Bioremediation of marine oil spills: when and when not - the Exxon Valdez experience. Microbial Biotechnology 2009, 2, (2), 213- 221.
  • 19. da Silva, M. L. B.; Alvarez, P. J. J., Bioaugmentation. In Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K. N., Ed. Springer-Verlag: Berlin Heidelberg, 2010; pp 4531-4544.
  • 20. Gentry, T. J.; Rensing, C.; Pepper, I. L., New approaches for bioaugmentation as a remediation tech nology. Crit. Rev. Environ. Sci. Technol. 2004, 34, (5), 447-494.
  • 21. Pritchard, P. H., Use of inoculation in bioremediation. Curr. Opin. Biotechnol. 1992, 3, (3), 232-243.
  • 22. vanVeen, J. A.; vanOverbeek, L. S.; vanElsas, J. D., Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev 1997, 61, (2), 121-&.
  • 23. Urgun-Demirtas, M.; Stark, B.; Pagilla, K., Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit. Rev. Biotechnol. 2006, 26, (3), 145-164.
  • 24. Smith, A. E.; Hristova, K.; Wood, L; Mackay, D. M.; Lory, E.; Lorenzana, D.; Scow, K. M., Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Environ. Health Perspect. 2005, 113, (3), 317-322.
  • 25. El Fantroussi, S.; Agathos, S. N., Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 2005, 8, (3), 268-275.
  • 26. Wolfaardt, G. M.; Korber, D. R.; Lawrence, J. R., Cultivation of microbial consortia and communities, In Manual of environmental microbiology, Third Edition, Hurst Ch.J., Ed. ASM Press, Washington, D.C., 2007.
  • 27. Bent, S. J.; Forney, L. J., The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. Isme Journal 2008, 2, (7), 689-695.
  • 28. Keller, M.; Zengler, K., Tapping into microbial diversity. Nat. Rev. Microbiol. 2004, 2, (2), 141-150.
  • 29. VerBerkmoes, N. C.; Denef, V. J.; Hettich, R. L.; Banfield, J. F., Systems biology: Functional analysis of natural microbial consortia using community proteomics. Nat. Rev. Microbiol. 2009, 7, (3), 196-205.
  • 30. Sharma, R.; Ranjan, R.; Kapardar, R. K.; Grover, A., `Unculturable' bacterial diversity: An untapped resource. Curr. Sci. 2005, 89, (1), 72-77.
  • 31. Tyson, G. W.; Banfield, J. F., Cultivating the uncultivated: a community genomics perspective. Trends Microbiol. 2005, 13, (9), 411-415.
  • 32. Zanaroli, G.; Di Toro, S.; Todaro, D.; Varese, G.; Bertolotto, A.; Fava, E, Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb. Cell Fact. 2010, 9, (1), 10.
  • 33. Owsianiak, M.; Chrzanowski, L.; Szulc, A.; Staniewski, J.; Olszanowski, A.; Olejnik-Schmidt, A. K.; Heipieper, H. J., Biodegradation of diesel/bio-diesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresour. Technol. 2009,100, (3), 1497-1500.
  • 34. Owsianiak, M.; Szulc, A.; Chrzanowski, L.; Cyplik, P.; Bogacki, M.; Olejnik-Schmidt, A. K.; Heipieper, H. J., Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Appl. Microbiol. Biotechnol. 2009, 84, (3), 545-553.
  • 35. Penning, H.; Srrensen, S. R.; Meyer, A. H.; Aamand, J.; Elsner, M., C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways. Environ. Sci. Technol. 2010.
  • 36. Long, T.; Or, D., Dynamics of microbial growth and coexistence on variably saturated rough surfaces. Microb. Ecol. 2009, 58, (2), 262-275.
  • 37. Smets, B. E; Barkay, T., Horizontal gene transfer: Perspectives at a crossroads of scientific disciplines. Nat. Rev. Microbiol. 2005, 3, (9), 675-678.
  • 38. Ben Jacob, E.; Becker, L; Shapira, Y.; Levine, H., Bacterial linguistic communication and social intelligence. Trends Microbiol. 2004,12, (8), 366-372.
  • 39. West, S. A.; Griffin, A. S.; Gardner, A.; Diggle, S. P., Social evolution theory for microorganisms. Nat. Rev. Microbiol. 2006, 4, 597-607.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1c2254c-8343-4432-ab05-eb4b48bc6250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.