PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Microstructural Morphology on Microscale Deformation Behavior of Al-4.5Cu-2Mg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microscale deformation behaviour of the Al-4.5Cu-2Mg alloy has been studied to understand the influence of various processing routes and conditions, i.e. the gravity casting with and without grain refiner, the rheocast process and the strain induced melt activation (SIMA) process. The micromechanics based simulations have been carried out on the optical microstructures of the alloy by 2D representative volume elements (RVEs) employing two different boundary conditions. Microstructural morphology, such as the grain size, the shape and the volume fraction of α-Al and binary eutectic phases have a significant effect on the stress and strain distribution and the plastic strain localization of the alloy. It is found that the stress and strain distribution became more uniform with increasing the globularity of the α-Al grain and the α-Al phase volume fraction. The simulated RVEs also reveals that the eutectic phase carries more load, but least ductility with respect to the α-Al phase. The SIMA processed alloy contains more uniform stress distribution with less stress localization which ensures better mechanical property than the gravity cast, grain refined and rheocast alloy.
Twórcy
autor
  • National Institute of Technology, Department of Metallurgical and Materials Engineering, Durgapur-713209, India
autor
  • Birbhum Institute of Engineering and Technology, Department of Mechanical Engineering
autor
  • National Institute of Technology, Department of Metallurgical and Materials Engineering, Durgapur-713209, India
autor
  • National Institute of Technology, Department of Metallurgical and Materials Engineering, Durgapur-713209, India
Bibliografia
  • [1] P. Dudek, FDM 3D Printing Technology in manufacturing composite elements, Archives of Metalurgy and Materials 58, 1415-1418 (2013)
  • [2] Z. Shan, A. M. Gokhale, Digital image analysis and microstructure modeling tools for microstructure sensitive design of materials, Int. J Plasticity 20, 1347-1370 (2004).
  • [3] V. V. Ganesh, N. Chawla, Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites experiments, Mat. Sci. Eng. A 391, 342-353 (2005).
  • [4] S. K. Paul, Real microstructure based micromechanical model to simulate microstructure level deformation behavior and failure initiation in DP 590 steel, Mater. Des. 44, 397-406 (2013).
  • [5] H. T. Hossein, A. Behnam, K. Javad, S. Ghasem, Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel, Materials Science & Engineering A 600, 108-121 (2014).
  • [6] T. Sirinakorn, S. Wongwises, V. Uthaisangsuk, A study of local deformation and damage of dual phase steel, Materials and Design 64, 729-742 (2014).
  • [7] P. Phetlam, V. Uthaisangsuk, Microstructure based flow stress modelling for quenched and tempered low alloy steel, Materials & Design 82, 189-199 (2015).
  • [8] A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, U. Prahl, Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM, Materials Science & Engineering: A 660, 181-194 (2016).
  • [9] B. Wu, N. Vajragupta, J. Lian, U. Hangen, P. Wechsuwanmanee, S. Münstermann , Prediction of plasticity and damage initiation behaviour of C45E+N steel by micromechanical modelling, Materials & Design 121, 154-166 (2017).
  • [10] S. K. Paul, M. Mukherjee, Determination of bulk flow properties of a material from the flow properties of its constituent phases, Computational Materials Science 84, 1-12 (2014).
  • [11] C. Heinrich, M. Aldridge, A. S. Wineman, J. Kieffer, A. M. Waas, K. Shahwan, The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites, Modelling Simul. Mater. Sci. Eng. 20, 1-25 (2012).
  • [12] X. Zhuang, S. Ma, Z. Zhao, Effect of particle size, fraction and carbide banding on deformation and damage behavior of ferrite-cementite steel under tensile/shear loads Modelling Simul. Mater. Sci. Eng. 25, 1-30 (2017).
  • [13] T. W. J. Geus, R. H. J. Peerlings, M. G. D. Geers, Microstructural modeling of ductile fracture initiation in multi-phase materials, Engineering Fracture Mechanics 147, 318-330 (2015).
  • [14] F. Farukh, L. G. Zhao, R. Jiang, P. Reed, D. Proprentner, B. A. Shollock, Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity, Computational Materials Science 111, 395-405 (2016).
  • [15] B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, International Materials Reviews 47, 3-29 (2002).
  • [16] E. Tzimas, A. Zavaliangos, A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced, melt activated process, Materials Science and Engineering A 289, 217-227 (2000).
  • [17] E. J. Lavernia, J. D. Ayers, T. S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, International Materials Reviews 37, 1-44 (1992).
  • [18] A. Bolouri, M. Shahmiri, E. N. H. Cheshmeh, Microstructural Evolution during Semi-Solid State Strain Induced Melt Activation Process of Aluminium, Trans. Nonferrous Met. Soc. China 20, 1663-1671 (2010).
  • [19] M. X. Xia, H. X. Zheng, S. Yuan, J. G. Li, Recrystallization of preformed AZ91D magnesium alloys in the semisolid state, Mater. Des. 26, 343-349 (2005).
  • [20] A. Bolouri, M. Shahmiri, C. G. Kang, Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process, J. Alloys Compd. 509, 402-408 (2011).
  • [21] L. Sang-Yong, L. Jung-Hwan, L. Young-Seon, Characterization of Al 7075 alloys after cold working and heating in the semi-solid temperature range, J. Mater. Process. Technol. 111, 42-47(2001).
  • [22] M. C. Flemings, Behaviour of Metal Alloys in the Semi-solid State, Metall. Trans. A 22, 957-981 (1991).
  • [23] H. T. Jiang, Y. L. Lu, W. C. Huang, X. L. Li, M. Q. Li, Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy, Mater. Charact. 51, 1-10 (2003).
  • [24] D. H. Kirkwood, Semisolid metal processing, Int. Mater. Rev. 39, 173-189 (1994).
  • [25] D. M. Calin, S. J.Andersen, R. Holmestad, E. Kobayashi, T. Sato, M. Mihara, Precipitation in an Al-Mg-Cu alloy and the effect of a low amount of Ag, Materials Science & Engineering A 658, 91-98(2016).
  • [26] C. Li, G. Sha, Gun, J. H. Xia, X. F. Liu, Y. Y. Wu, N. Birbilis, S. P. Ringer, N. Wu, Enhanced age-hardening response of Al-4Mg-1Cu (wt.%) microalloyed with Ag and Si Scripta Materialia 68, 857-860 (2013).
  • [27] Y. Han, K. Ma, L. Li, W. Chen, H. Nagaumi, Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content. Materials and Design 39, 418-424 (2012).
  • [28] Abaqus 6.14 Analysis User’s Guide, Deformation plasticity, Dassault System, Section 23.2.13 (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1bf1bcc-4cf9-43c3-ad4c-2afcedfae458
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.